[通信作者] 陈 伟,E-mail:landcw@tmmu.edu.cn
2097-0927/Copyright © 2025, 陆军军医大学(第三军医大学)。这篇开放获取文章遵循CC BY许可协议 (https://creativecommons.org/licenses/by/4.0/)
引用格式:周素伊,甄志铭,庞慧琳,等.帕金森病患者脉络丛体积改变与认知功能的相关性研究[J].陆军军医大学学报,2025,47(07):649-655.DOI:10.16016/j.2097-0927.202409094.
Citation:ZHOU S Y,ZHEN Z M,PANG H L,et al.Correlation between change in choroid plexus volume and cognitive function in patients with Parkinson’s disease[J].J Army Med Univ,2025,47(07):649-655.DOI:10.16016/j.2097-0927.202409094.
[摘要] 目的 探讨帕金森病(Parkinson’s disease, PD)患者不同认知状态下脉络丛(choroid plexus,CP)体积变化及其与其他脑区结构体积的相关性。方法 本研究为横断面研究,纳入2023年5月至2024年4月期间就诊于陆军军医大学第一附属医院神经外科的48例PD患者及从健康体检中心招募的35例健康对照(healthy controls, HC),基于简易精神状态检查量表(Mini-Mental State Examination, MMSE)评估结果,将PD患者分为帕金森病伴认知功能障碍组(Parkinson’s disease with cognitive impairment, PD-CI)27例和帕金森病认知功能正常组(Parkinson’s disease with normal cognitive function, PD-NC)21例。采用3.0T磁共振成像(magnetic resonance imaging, MRI)进行MPRAGE序列扫描,并使用FreeSurfer 6.0软件获得脉络丛体积(choroid plexus volume, CPV)与其他脑区结构的体积。对CPV进行校正,计算其与估算的总颅内体积(estimated total intracranial volume, eTIV)的比值。调整混杂因素后,通过偏相关分析评估CPV/eTIV比值与其他脑区结构体积及认知量表评分之间的关系。使用多元线性回归分析进一步探究PD-CI组中CPV与认知功能之间的关系。结果 与HC组相比,PD-CI组的CPV显著增大(P=0.029)。PD-CI组中,CPV/eTIV比值与侧脑室体积(r=0.689, P=0.001)、第三脑室体积(r=0.592, P=0.006)、脑脊液(cerebrospinal fluid,CSF)体积(r=0.508, P=0.022)、脑白质高信号(white matter hyperintensities, WMH)体积(r=0.486, P=0.030)呈显著正相关,同时与尾状核体积(r=-0.530, P=0.016)、丘脑体积(r=-0.477, P=0.033)及MMSE评分呈显著负相关(r=-0.483, P=0.031)。而PD-NC组中,CPV/eTIV比值仅与CSF体积(r=0.571, P=0.021)呈显著正相关;在PD-CI组中,CPV/eTIV比值与MMSE评分行多元线性回归分析,结果显示两者仍呈显著负相关(β=-0.388, P=0.046)。结论 PD患者的认知功能障碍可能与CPV变化密切相关,提示CPV可作为评估PD认知损伤的潜在影像学标志物。
[关键词] 脉络丛;帕金森病;磁共振;认知功能障碍
[中图法分类号] R322.27;R445.2;R742.5 [文献标志码] A
[Abstract] Objective To investigate the change in choroid plexus (CP) volume in Parkinson’s disease (PD) patients with different cognitive states and its correlation with structural volumes of other brain regions. Methods A cross-sectional study was conducted on 48 PD patients admitted in Department of Neurosurgery of the First Affiliated Hospital of Army Medical University between May 2023 and April 2024, and on 35 healthy controls (HC) recruited through a physical exam center. According to the results of Mini-Mental State Examination (MMSE), the patients were divided into PD with cognitive impairment (PD-CI) group (n=27) and PD with normal cognitive function (PD-NC) group (n=21). 3.0T magnetic resonance imaging (MRI) was performed using MPRAGE sequences, and CP volume and volumes of other brain regions were obtained using FreeSurfer 6.0 software. The CP volume was adjusted by calculating the ratio of its volume to estimated total intracranial volume (eTIV). After controlling for confounders, partial correlation analysis was used to assess the relationship between the CPV/eTIV ratio and the volumes of other brain regions as well as cognitive scale scores. Additionally, multiple linear regression analysis was performed to further explore the relationship between CPV and cognitive function in the PD-CI group. Results Compared to the HC group, the CPV in the PD-CI group was significantly larger (P=0.029). In the PD-CI group, the CPV/eTIV ratio showed significant positive correlations with the volume of the lateral ventricles (r=0.689, P=0.001), the volume of the third ventricle (r=0.592, P=0.006), the volume of cerebrospinal fluid (CSF) (r=0.508, P=0.022), and white matter hyperintensities (WMH) (r=0.486, P=0.030), but was negatively correlated with the volume of the caudate nucleus (r=-0.530, P=0.016), the volume of the thalamus (r=-0.477, P=0.033), and the MMSE scores (r=-0.483, P=0.031). But in the PD-NC group, the CPV/eTIV ratio was only positively correlated with CSF volume (r=0.571, P=0.021). Multiple linear regression analysis indicated that the CPV/eTIV ratio and MMSE scores remained significantly negatively correlated in the PD-CI group (β=-0.388, P=0.046). Conclusion Cognitive impairment in PD patients may be closely associated with the change in CP volume, suggesting that the volume can serve as a potential imaging marker in assessment of cognitive impairment in PD patients.
[Key words] choroid plexus; Parkinson’s disease; magnetic resonance imaging; cognitive impairment
帕金森病(Parkinson’s disease,PD)是最常见的神经退行性疾病之一。近年来,认知功能障碍作为PD常见的非运动症状逐渐受到重视。PD患者发展成为帕金森病痴呆(Parkinson’s disease dementia, PDD)的风险是正常人的4~6
脉络丛(choroid plexus,CP)作为脑类淋巴系统的重要组成部分,近年来因其在脑营养供应及稳态维持方面的重要作用,在神经退行性疾病病理生理学机制研究中受到广泛关注。CP功能障碍已被认为是阿尔茨海默病(Alzheimer’s disease,AD)的一种独立亚
目前,关于PD患者不同认知状态下CP变化的研究较少。本研究以CP为核心,结合脑类淋巴循环的视角,探索PD患者CP与认知功能障碍之间的关系,为深入理解PD相关神经认知损伤的机制提供新思路。
1 资料与方法
1.1 研究对象
本研究为横断面研究,纳入2023年5月至2024年4月就诊于陆军军医大学第一附属医院神经外科54例PD患者及通过健康体检中心招募的37例健康对照(healthy controls, HC)。PD组纳入标准:①由2名神经外科医生参照中国帕金森病的诊断标准(2016版
PD和HC组排除标准:①曾接受颅内手术者;②合并颅内占位性病变、正常压力脑积水、出血或缺血性脑血管病变;③存在其他会导致或可能影响认知功能改变的疾病,如小脑性共济失调、额颞叶痴呆、原发性失语等;④继发性帕金森综合征和帕金森叠加综合征;⑤有晚期、严重或不稳定的内科系统疾病;⑥因主观或客观原因不能完成磁共振检查者。其中PD组中6例由于检查过程中依从性欠佳导致图像质量较差,HC组中2例由于存在幽闭恐惧被排除。本研究已通过陆军军医大学第一附属医院伦理委员会审批[(A)KY2023060],并获得所有受试者知情同意。
1.2 研究工具及方法
1.2.1 一般资料
收集所有入选者的年龄、性别及受教育年限。PD患者另收集发病年龄、病程。
1.2.2 量表评估与分组
1.2.2.1 认知功能评估
采用简易精神状态检查量表(Mini-Mental State Examination, MMSE)评估研究对象的认知功能。MMSE评分标
1.2.2.2 Hoehn-Yahr(H-Y)分期
采用H-Y分期评估量表评估PD患者疾病分期。
1.2.3 仪器与方法
所有受试者进行Trio-3.0T MRI(Siemens)头颅MPRAGE序列扫描。扫描参数:TR=1 900 ms,TE=2.52 ms,Slices=176,Voxel size=1 mm×1 mm×1 mm,翻转角=9º。
由2名放射科医师(分别具有5年和10年颅脑影像诊断经验)评估了所有MRI图像,以识别图像伪影并排除形态学病变(无症状大体脑损伤)的存在。将DICOM格式的原始MR图像转换为FSL、SPM和Mricron等软件使用的NIfTI格式(http://people.cas.sc.edu/rorden/mricron/dcm2nii.html)。
1.2.4 图像处理与数据分析
基于所有受试者的MPRAGE结构像,在全脑水平上,使用FreeSurfer 6.0软件,采用高斯混合模型分割方法对全脑各脑区和侧脑室中的CP进行了自动分割。将FreeSurfer软件分割提取的估算的总颅内体积(estimated total intracranial volume,eTIV)、全脑白质、全脑灰质、CP、丘脑、尾状核、苍白球、壳核、海马、杏仁核、脑脊液(cerebrospinal fluid, CSF)和白质高信号(white matter hyperintensities, WMH)等体积作为感兴趣的区域,每个区域的总体积等于左侧和右侧脑区的体积和,并由FreeSurfer软件自动计算获得。最终的自动分割结果均由1名具有10年经验的神经影像学研究人员进行核对和校正。
1.3 统计学分析
所有统计分析均使用SPSS 26.0软件进行。定量资料的统计描述方法如下:若数据符合正态分布,采用±s表示;若数据不符合正态分布,采用M(P25,P75)表示。定性资料以例(%)表示。两组间符合正态分布且方差齐性的计量资料比较使用独立样本t检验;正态分布的计量资料多组间比较采用单因素方差分析,非正态分布的计量资料多组间比较采用Kruskal-Wallis H检验,并进行Bonferroni多重比较校正。对CPV进行校正,计算CPV与eTIV的比值。在控制年龄、性别、受教育年限和病程的影响后,通过偏相关分析评估CPV/eTIV比值与其他脑区结构体积及认知量表评分之间的关系。使用多元线性回归分析进一步探讨CPV/eTIV比值与认知功能之间的关系。P<0.05表示差异具有统计学意义。
2 结果
2.1 一般资料情况及认知功能的评估
83例研究对象均为右利手,其中PD-NC组21例(男13例,女8例),平均年龄(61.24±5.64)岁,PD-CI组27例(男12例,女15例),平均年龄(64.19±8.68)岁;HC组35例(男16例,女19例),平均年龄(62.77±5.12)岁。统计结果显示,HC组、PD-NC组和PD-CI组在受教育年限及MMSE评分方面差异具有统计学意义(P<0.05),而在年龄、性别、病程和H-Y分期差异无统计学意义(
指标 | HC组(n=35) | PD-NC组(n=21) | PD-CI组(n=27) | F/H/ | P值 | 校正后P值 | ||
---|---|---|---|---|---|---|---|---|
HC vs PD-NC | HC vs PD-CI | PD-NC vs PD-CI | ||||||
年龄/岁 | 62.77±5.12 | 61.24±5.64 | 64.19±8.68 | 1.062 | 0.354 | 0.678 | 0.840 | 0.413 |
性别 | 1.769 | 0.413 | 0.720 | >0.999 | 0.690 | |||
男性 | 16(45.70) | 13(61.90) | 12(44.40) | - | - | - | - | - |
女性 | 19(54.30) | 8(38.10) | 15(55.60) | - | - | - | - | - |
病程/年 | - | 6.62±5.23 | 5.85±5.05 | 0.495 | 0.623 | - | - | - |
受教育年限/年 | 14.0(11,15) | 9.0(9.0,13.5) | 7.0(6,9) | 32.902 | <0.001 | 0.083 | <0.001 | 0.009 |
H-Y 分期 | - | 2.41±1.13 | 2.54±1.07 | -0.532 | 0.599 | - | - | - |
MMSE评分 | 30.00(29.00,30.00) | 29.00(28.00,30.00) | 23.00(19.00,24.00) | 58.970 | <0.001 | 0.488 | <0.001 | <0.001 |
CPV/mL | 1.29±0.29 | 1.47±0.38 | 1.64±0.62 | 4.546 | 0.016 | 0.193 | 0.029 | 0.602 |
CPV/eTIV/×1 | 0.90±0.18 | 1.00±0.19 | 1.12±0.37 | 4.026 | 0.025 | 0.381 | 0.029 | 0.304 |
侧脑室/eTIV/×1 | 13.88±3.74 | 17.55±6.89 | 18.28±7.85 | 5.257 | 0.010 | 0.095 | 0.033 | 0.981 |
第三脑室/eTIV/×1 | 0.88±0.21 | 1.00±0.32 | 1.26±0.44 | 8.106 | 0.001 | 0.414 | 0.001 | 0.067 |
CSF/eTIV/×1 | 0.74±0.13 | 0.80±0.19 | 0.92±0.15 | 9.863 | <0.001 | 0.475 | <0.001 | 0.039 |
WMH/eTIV/×1 | 1.10±0.75 | 1.34±0.69 | 1.63±0.68 | 4.191 | 0.019 | 0.728 | 0.015 | 0.468 |
尾状核/eTIV/×1 | 4.71±0.44 | 4.38±0.54 | 4.27±0.45 | 7.392 | 0.001 | 0.042 | 0.001 | >0.999 |
丘脑/eTIV/×1 | 10.21±0.87 | 9.56±0.96 | 9.56±1.01 | 4.680 | 0.012 | 0.048 | 0.290 | >0.999 |
eTIV/mL | 1 416.71±121.52 | 1 482.41±158.94 | 1 451.2±128.71 | 1.624 | 0.204 | 0.239 | 0.956 | >0.999 |
2.2 PD组与HC组CPV差异
PD-CI组与HC组相比,CPV显著更高[(1.64±0.62)vs(1.29±0.29)mL,P=0.029]。虽然没有显著的统计学差异,但HC组、PD-NC组及PD-CI组的CPV[(1.29±0.29) mL、(1.47±0.38) mL、(1.64±0.62) mL]具有依次增大的趋势。对CPV进行校正后,CPV/eTIV比值在PD-CI组与HC组中仍有显著性差异(1.12×1

图1 PD-CI组(A)与HC组(B)相关性脑区示意图
2.3 CPV/eTIV比值与其他脑区结构体积相关性分析
对CPV进行校正后,控制年龄、性别、病程和受教育年限因素的影响后,进行CPV/eTIV比值与其他脑区结构体积的偏相关分析。在PD-CI组中,CPV/eTIV比值与侧脑室体积(r=0.689,P=0.001)、第三脑室体积(r=0.592,P=0.006)、CSF体积(r=0.508,P=0.022)、WMH体积(r=0.486,P=0.030)呈显著正相关,同时与尾状核体积(r=-0.530,P=0.016)、丘脑体积(r=-0.477,P=0.033)。在PD-NC组中,CPV/eTIV比值仅与CSF体积(r=0.571, P=0.021)呈显著正相关。在HC组中,CPV/eTIV比值与侧脑室体积(r=0.352,P=0.048)、第三脑室体积(r=0.590,P<0.001)、CSF体积(r=0.383,P=0.031)呈显著正相关(
HC组 | PD-NC组 | PD-CI组 | ||||||
---|---|---|---|---|---|---|---|---|
r值 | P值 | r值 | P值 | r值 | P值 | |||
侧脑室 | 0.352 | 0.048 | 0.193 | 0.473 | 0.689 | 0.001 | ||
第三脑室 | 0.590 | <0.001 | 0.318 | 0.230 | 0.592 | 0.006 | ||
CSF | 0.383 | 0.031 | 0.571 | 0.021 | 0.508 | 0.022 | ||
WMH | 0.396 | 0.025 | -0.150 | 0.580 | 0.486 | 0.030 | ||
尾状核 | 0.218 | 0.231 | 0.323 | 0.222 | -0.530 | 0.016 | ||
丘脑 | 0.040 | 0.828 | 0.091 | 0.738 | -0.477 | 0.033 | ||
MMSE评分 | -0.118 | 0.522 | 0.306 | 0.250 | -0.483 | 0.031 |
2.4 PD-CI组中CPV/eTIV比值与认知量表的关系
在控制了年龄、性别、受教育年限和病程的影响后,偏相关分析显示PD-CI组中CPV/eTIV比值与MMSE评分呈显著负相关(r=-0.483,P=0.031,
变量 | 回顾系数B | 标准误 | β值 | 95%CI | P值 |
---|---|---|---|---|---|
年龄 | 0.116 | 0.087 | 0.266 | -0.066~0.297 | 0.198 |
性别 | -1.072 | 1.502 | -0.147 | -4.227~2.083 | 0.484 |
受教育年限 | 0.767 | 0.230 | 0.623 | 0.285~1.250 | 0.004 |
病程 | -0.278 | 0.143 | -0.383 | -0.577~0.022 | 0.067 |
CPV/eTIV比值 |
-3.620×1 |
0.970×1 | -0.388 |
-7.160×1 | 0.046 |
3 讨论
CP作为脑类淋巴系统的重要组成部分,CPV增大已被证明与多种神经退行性疾病的进程密切相
3.1 PD-CI组患者CPV(CPV/eTIV比值)较HC组显著增大
PD患者的病理特征为黑质致密区多巴胺能神经元大量变性丢失和以α-syn为主的蛋白质异常聚
3.2 CPV增大与脑结构变化及认知功能的相关性
CP作为CSF循环的起点,CPV的增大可能广泛影响脑类淋巴系统的下游结构。CP功能障碍可能导致CSF循环异
CP具有产生和分泌生长因子的作用,并表达许多激素的受体,参与脑的营养支持和神经调
然而,本研究也存在一些局限性。首先,本研究每组的样本量较少;其次,本研究缺乏纵向随访数据,限制了对PD患者认知功能变化过程的深入理解。因此,未来的研究应当开展多中心的纵向研究,以验证CPV作为认知功能障碍的预测指标的可靠性和稳定性。
综上所述,本研究发现PD-CI患者CPV增大且与类淋巴系统障碍、尾状核和丘脑萎缩及WMH增大相关。本研究的发现为PD认知障碍的临床诊断提供影像学依据,并揭示了CP变化与认知损伤之间的潜在关联。
利益冲突
本文所有作者声明不存在利益冲突
参考文献
DE LAU L M, SCHIPPER C M, HOFMAN A, et al. Prognosis of parkinson disease: risk of dementia and mortality: the Rotterdam study[J]. Arch Neurol, 2005, 62(8): 1265-1269. DOI: 10.1001/archneur.62.8.1265. [百度学术]
李静, 胡晓飞, 周振华. 帕金森病运动亚型患者运动症状及认知功能进展特征: 3年纵向研究[J]. 第三军医大学学报, 2020, 42(13): 1273-1278. DOI: 10.16016/j.1000-5404.202001202. [百度学术]
LI J, HU X F, ZHOU Z H. Progression characteristics of motor symptoms and cognitive function in patients with motor subtype of Parkinson’s disease: a 3-year longitudinal study[J]. J Third Mil Med Univ, 2020, 42(13): 1273-1278. DOI: 10.16016/j.1000-5404.202001202. [百度学术]
WILLIAMS-GRAY C H, MASON S L, EVANS J R, et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort[J]. J Neurol Neurosurg Psychiatry, 2013, 84(11): 1258-1264. DOI: 10.1136/jnnp-2013-305277. [百度学术]
MELZER T R, WATTS R, MACASKILL M R, et al. Grey matter atrophy in cognitively impaired Parkinson’s disease[J]. J Neurol Neurosurg Psychiatry, 2012, 83(2): 188-194. DOI: 10.1136/jnnp-2011-300828. [百度学术]
APOSTOLOVA L G, BEYER M, GREEN A E, et al. Hippocampal, caudate, and ventricular changes in Parkinson’s disease with and without dementia[J]. Mov Disord, 2010, 25(6): 687-695. DOI: 10.1002/mds.22799. [百度学术]
HONMA M, KURODA T, FUTAMURA A, et al. Mental time dysfunction in Parkinson’s and Alzheimer’s diseases[J]. Brain Nerve, 2015, 67(3): 297-302. DOI: 10.11477/mf.1416200135. [百度学术]
TIJMS B M, VROMEN E M, MJAAVATTEN O, et al. Cerebrospinal fluid proteomics in patients with Alzheimer’s disease reveals five molecular subtypes with distinct genetic risk profiles[J]. Nat Aging, 2024, 4: 33-47. DOI: 10.1038/s43587-023-00550-7. [百度学术]
CHOI J D, MOON Y, KIM H J, et al. Choroid plexus volume and permeability at brain MRI within the Alzheimer disease clinical spectrum[J]. Radiology, 2022, 304(3): 635-645. DOI: 10.1148/radiol.212400. [百度学术]
MORRIS H R, SPILLANTINI M G, SUE C M, et al. The pathogenesis of Parkinson’s disease[J]. Lancet, 2024, 403(10423): 293-304. DOI: 10.1016/S0140-6736(23)01478-2. [百度学术]
JEONG S H, JEONG H J, SUNWOO M K, et al. Association between choroid plexus volume and cognition in Parkinson disease[J]. Eur J Neurol, 2023, 30(10): 3114-3123. DOI: 10.1111/ene.15999. [百度学术]
中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍专业. 中国帕金森病的诊断标准(2016版)[J]. 中华神经科杂志, 2016, 49(4): 268-271.DOI: 10.3760/cma.j.issn.1006-7876.2016.04.002. [百度学术]
Parkinson’s Disease and Movement Disorders Group of Neurology Branch of Chinese Medical Association, Parkinson’s Disease and Movement Disorders Professional Committee of Neurologist Branch of Chinese Medical Doctor Association. Chinese diagnostic criteria for Parkinson’s disease (2016 Edition)[J]. Chin J Neurol, 2016, 49(4): 268-271. DOI: 10.3760/cma.j.issn.1006-7876.2016.04.002. [百度学术]
FOLSTEIN M F, FOLSTEIN S E, MCHUGH P R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician[J]. J Psychiatr Res, 1975, 12(3): 189-198. [百度学术]
MÜLLER J, SINNECKER T, WENDEBOURG M J, et al. Choroid plexus volume in multiple sclerosis vs neuromyelitis optica spectrum disorder: a retrospective, cross-sectional analysis[J]. Neurol Neuroimmunol Neuroinflamm, 2022, 9(3): e1147. DOI: 10.1212/NXI.0000000000001147. [百度学术]
HE P K, GAO Y Y, SHI L, et al. The association of CSF biomarkers and cognitive decline with choroid plexus volume in early Parkinson’s disease[J]. Parkinsonism Relat Disord, 2024, 120: 105987. DOI: 10.1016/j.parkreldis. 2023.105987. [百度学术]
YAO J, HUANG T, TIAN Y Y, et al. Early detection of dopaminergic dysfunction and glymphatic system impairment in Parkinson’s disease[J]. Parkinsonism Relat Disord, 2024, 127: 107089. DOI: 10.1016/j.parkreldis. 2024.107089. [百度学术]
LOPES D M, LLEWELLYN S K, HARRISON I F. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system[J]. Transl Neurodegener, 2022, 11(1): 19. DOI: 10.1186/s40035-022-00293-2. [百度学术]
CUI J, XU H X, LEHTINEN M K. Macrophages on the margin: choroid plexus immune responses[J]. Trends Neurosci, 2021, 44(11): 864-875. DOI: 10.1016/j.tins. 2021.07.002. [百度学术]
SHECHTER R, MILLER O, YOVEL G, et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus[J]. Immunity, 2013, 38(3): 555-569. DOI: 10.1016/j.immuni.2013.02.012. [百度学术]
WEWER C, SEIBT A, WOLBURG H, et al. Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis[J]. J Neuroinflamm, 2011, 8: 51. DOI: 10.1186/1742-2094-8-51. [百度学术]
RAYASAM A, FAUSTINO J, LECUYER M, et al. Neonatal stroke and TLR1/2 ligand recruit myeloid cells through the choroid plexus in a CX3CR1-CCR2- and context-specific manner[J]. J Neurosci, 2020, 40(19): 3849-3861. DOI: 10.1523/jneurosci.2149-19.2020. [百度学术]
SENAY O, SEETHALER M, MAKRIS N, et al. A preliminary choroid plexus volumetric study in individuals with psychosis[J]. Hum Brain Mapp, 2023, 44(6): 2465-2478. DOI: 10.1002/hbm.26224. [百度学术]
FLEISCHER V, GONZALEZ-ESCAMILLA G, CIOLAC D, et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans[J]. Proc Natl Acad Sci U S A, 2021, 118(36): e2025000118. DOI: 10.1073/pnas.2025000118. [百度学术]
KARIMY J K, ZHANG J W, KURLAND D B, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus[J]. Nat Med, 2017, 23: 997-1003. DOI: 10.1038/nm.4361. [百度学术]
KURODA T, HONMA M, MORI Y, et al. Increased presence of cerebral microbleeds correlates with ventricular enlargement and increased white matter hyperintensities in Alzheimer’s disease[J]. Front Aging Neurosci, 2020, 12: 13. DOI: 10.3389/fnagi.2020.00013. [百度学术]
MUNICIO C, CARRERO L, ANTEQUERA D, et al. Choroid plexus aquaporins in CSF homeostasis and the glymphatic system: their relevance for Alzheimer’s disease[J]. Int J Mol Sci, 2023, 24(1): 878. DOI: 10.3390/ijms24010878. [百度学术]
LI Y, ZHOU Y, ZHONG W, et al. Choroid plexus enlargement exacerbates white matter hyperintensity growth through glymphatic impairment[J]. Ann Neurol, 2023, 94(1): 182-195. DOI: 10.1002/ana.26648. [百度学术]
SUNWOO M K, JEON S, HAM J H, et al. The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease[J]. Eur J Neurol, 2014, 21(6): 922-e50. DOI: 10.1111/ene.12412. [百度学术]
CARVALHO DE ABREU D C, PIERUCCINI-FARIA F, SARQUIS-ADAMSON Y, et al. White matter hyperintensity burden predicts cognitive but not motor decline in Parkinson’s disease: results from the Ontario Neurode-generative Diseases Research Initiative[J]. Eur J Neurol, 2023, 30(4): 920-933. DOI: 10.1111/ene.15692. [百度学术]
KAUR C, RATHNASAMY G, LING E A. The choroid plexus in healthy and diseased brain[J]. J Neuropathol Exp Neurol, 2016, 75(3): 198-213. DOI: 10.1093/jnen/nlv030. [百度学术]
LEH S E, PTITO A, CHAKRAVARTY M M, et al. Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study[J]. Neurosci Lett, 2007, 419(2): 113-118. DOI: 10.1016/j.neulet.2007.04.049. [百度学术]
MENDEZ M F, ADAMS N L, LEWANDOWSKI K S. Neurobehavioral changes associated with caudate lesions[J]. Neurology, 1989, 39(3): 349-354. DOI: 10.1212/wnl.39.3.349. [百度学术]
BIESBROEK J M, VERHAGEN M G, VAN DER STIGCHEL S, et al. When the central integrator disintegrates: a review of the role of the thalamus in cognition and dementia[J]. Alzheimers Dement, 2024, 20(3): 2209-2222. DOI: 10.1002/alz.13563. [百度学术]
RÜB U, DEL TREDICI K, SCHULTZ C, et al. Parkinson’s disease: the thalamic components of the limbic loop are severely impaired by α-synuclein immunopositive inclusion body pathology[J]. Neurobiol Aging, 2002, 23(2): 245-254. DOI: 10.1016/S0197-4580(01)00269-X. [百度学术]
ZHANG Z, TAN Q, GUO P, et al. NLRP3 inflammasome-mediated choroid plexus hypersecretion contributes to Hydrocephalus after intraventricular hemorrhage via phosphorylated NKCC1 channels[J]. J Neuroinflamm, 2022, 19(1): 163. DOI: 10.1186/s12974-022-02530-x. [百度学术]