[1]傅俊豪,陈妍,杨纯勇,等.丙泊酚麻醉下脑氧供需平衡和大脑自动调节平台及其影响因素的研究[J].陆军军医大学学报(原第三军医大学学报),2022,44(18):1845-1855.
 FU Junhao,CHEN Yan,YANG Chunyong,et al.Brain oxygen supply-demand balance and cerebral autoregulatory plateau under propofol anesthesia and influencing factors [J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):1845-1855.
点击复制

丙泊酚麻醉下脑氧供需平衡和大脑自动调节平台及其影响因素的研究(/HTML )
分享到:

陆军军医大学学报(原第三军医大学学报)[ISSN:1000-5404/CN:51-1095/R]

卷:
44卷
期数:
2022年第18期
页码:
1845-1855
栏目:
临床医学
出版日期:
2022-09-30

文章信息/Info

Title:
Brain oxygen supply-demand balance and cerebral autoregulatory plateau under propofol anesthesia and influencing factors 
作者:
傅俊豪陈妍杨纯勇鲁开智
陆军军医大学(第三军医大学)第一附属医院麻醉科
Author(s):
FU Junhao CHEN Yan YANG Chunyong LU Kaizhi

Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
脑氧供需平衡大脑血流自动调节范围脑氧饱和度脑组织血红蛋白浓度指数
Keywords:
 
分类号:
R331.37; R338.2; R614.1
文献标志码:
A
摘要:

目的探讨丙泊酚在静脉麻醉前后的脑氧供需平衡是否存在差异以及脑氧供需平衡和大脑自动调节平台的影响因素。方法选取2020年6-10月于我院肝胆外科行开腹手术的53例患者,观测从入手术室至手术结束期间的局部脑氧饱和度(regional cerebral oxygensaturation, rSO2)、脑组织血红蛋白浓度指数(cerebral tissue hemoglobin concentration index, THI)、平均动脉压(mean arterial pressure, MAP)。采用 rSO2以及THI评价脑的氧合情况。然后计算整个手术过程中rSO2与MAP之间的移动线性Pearson相关系数,即COx,计算THI与MAP之间的移动线性Pearson相关系数,即THx。利用COx和THx探讨大脑自动调节的上下限和平台长度。间断采集血气分析,患者都采用标准化麻醉管理。结果左右两侧脑rSO2在麻醉前和麻醉后差异有统计学意义(左侧P<0.001,右侧P<0.001);左右两侧脑THI在麻醉前和麻醉后差异有统计学意义(左侧P<0.001,右侧P<0.001)。左右侧rSO2和THI分别根据年龄、是否阻断肝门和手术时长分组比较差异都无统计学意义(P>0.05)。线性相关曲线显示左右脑THI随着年龄的增长有逐渐下降的趋势(左脑THI随年龄变化趋势r=-0.261 8,P=0.058 3;右脑THI随年龄变化趋势r=-0.283 6,P=0.039 6)。 丙泊酚静脉麻醉下由COx界定脑血流自动调节下限、上限和调节范围分别为(81.98±12.63)、(93.67±13.69)、(11.22±8.38)mmHg。由THx界定脑血流自动调节下限、上限和调节范围分别为(79.96±10.61)、(93.77±12.34)、(13.79±8.63)mmHg。由COx和THx界定的CA上限、下限和调节范围根据年龄是否大于50岁、是否阻断肝门和手术时长是否大于360 min进行分组比较,差异无统计学意义(P>0.05)。结论丙泊酚麻醉后会降低患者左右脑rSO2和THI,左右脑THI受到年龄影响,脑血流自动调节的下限、上限以及自动调节范围不受年龄是否大于50岁、是否阻断肝门和手术时长是否大于360 min影响。

Abstract:

ObjectiveTo investigate the differences in brain oxygen supply-demand balance before and after intravenous anesthesia with propofol, and determine the influencing factors of the balance and cerebral autoregulation plateau. MethodsA total of 53 patients undergoing open hepatobiliary surgery in our hospital from June 2020 to October 2020 were enrolled in this study. Their local regional cerebral oxygen saturation (rSO2),  cerebral tissue hemoglobin concentration index (THI) and mean arterial pressure (MAP) were monitored and recorded from entering the operating room to the end of the operation. Brain oxygenation was assessed using rSO2 as well as using THI. Then the moving linear Pearson correlation coefficient between rSO2 and MAP was calculated and named as Cox, and the moving linear Pearson correlation coefficient between THI and MAP was also calculated and named as THx. The upper and lower limits and range of cerebral autoregulation (CA) were studied using COx and THx. Intermittent sampling of blood was performed for blood gas analysis. All patients underwent standardized anesthesia management.  ResultsThere were significant differences in rSO2 in the left and right brain before and after anesthesia (left: P<0.001, right: P<0.001), so were in THI in the left and right sides before and after anesthesia (left: P<0.001, right: P<0.001). There were no statistical differences in the left and right rSO2 and THI among those at different ages, with the porta hepatis being blocked or not, and with different operation durations (P>0.05). Linear correlation curve showed that the THI values of the left and right brain were decreased with age (left: r=-0.261 8, P=0.058 3; right: r=-0.283 6, P=0.039 6). Under propofol intravenous anesthesia, COx defined the lower limit, upper limit and range of CA were 81.98±12.63, 93.67±13.69 and 11.22±8.38 mmHg, respectively. THx defined the lower limit, upper limit and range of CA was 79.96±10.61, 93.77±12.34 and 13.79±8.63 mmHg, respectively. No obvious differences were seen in the upper limit, lower limit and adjustment range of CA defined by COx and THx among those with the age is older than 50 years or not, porta hepatis being blocked or not, and longer than 360 min or not (P>0.05). ConclusionPropofol anesthesia can induce declined rSO2 and THI values in the left and right brain. The left and right cerebral THI is affected by age, while the lower limit, upper limit and range of CA are not affected by the age older than 50 years, the porta hepatis being blocked or not, and the operation time longer than 360 min or not.

参考文献/References:

[1]MOSKOWITZ E E, OVERBEY D M, JONES T S,et al. Post-operative delirium is associated with increased 5-year mortality[J]. Am J Surg, 2017, 214(6):  1036-1038. DOI: 10.1016/j.amjsurg.2017.08.034.
 
[2]RADTKE F M, FRANCK M, HERBIG T S,et al. Incidence and risk factors for cognitive dysfunction in patients with severe systemic disease[J]. J Int Med Res, 2012, 40(2):  612-620. DOI: 10.1177/147323001204000223.
 
[3]ROBINSON T N, RAEBURN C D, TRAN Z V,et al. Post-operative delirium in the elderly:  risk factors and outcomes[J]. Ann Surg, 2009, 249(1):  173-178. DOI: 10.1097/SLA.0b013e31818e4776.
 
[4]BELROSE J C, NOPPENS R R. Anesthesiology and cognitive impairment:  a narrative review of current clinicalliterature[J]. BMC Anesthesiol, 2019, 19(1):  241. DOI: 10.1186/s12871-019-0903-7.
 
[5]辜梦月. 开腹手术患者术中脑氧供需平衡与脑血流自动调节范围的影响因素研究[D]. 重庆:陆军军医大学, 2021. 
 
GU M Y. A study on effect factors of cerebral oxygen supply-consumption balance and cerebral autoregulation in patients during open abdominal surgery[D]. Chongqing: Army Medical University, 2021.
 
[6]HORI D, HOGUE C W Jr, SHAH A, et al. Cerebral autoregulation monitoring with ultrasound-tagged near-infrared spectroscopy in cardiac surgery patients[J]. Anesth Analg, 2015, 121(5):  1187-1193. DOI: 10.1213/ANE.0000000000000930.
 
[7]HIGHTON D, GHOSH A, TACHTSIDIS I,et al. Monitoring cerebral autoregulation after brain injury:  multimodal assessment of cerebral slow-wave oscillations using near-infrared spectroscopy[J]. Anesth Analg, 2015, 121(1):  198-205. DOI: 10.1213/ANE.0000000000000790.
 
[8]DE TOURNAY-JETT E, DUPUIS G, BHERER L, et al. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery[J]. J Cardiothorac Vasc Anesth, 2011, 25(1):  95-104. DOI: 10.1053/j.jvca.2010.03.019.
 
[9]SCHOEN J, MEYERROSE J, PAARMANN H,et al. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients:  a prospective observational trial[J]. Crit Care, 2011, 15(5):  R218. DOI: 10.1186/cc10454.
 
[10]SHEN J, WANG W, ZHANG W,et al. A high-efficiency MUF method benefits postoperative hemodynamic stability and oxygen delivery in neonates with transposition of great arteries[J]. J Card Surg, 2019, 34(6):  468-473. DOI: 10.1111/jocs.14065.
 
[11]OSHIMA T, KARASAWA F, SATOH T. Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans[J]. Acta Anaesthesiol Scand, 2002, 46(7):  831-835. DOI: 10.1034/j.1399-6576.2002.460713.x.
 
[12]SCHLNZEN L, JUUL N, HANSEN K V, et al. Regional cerebral blood flow and glucose metabolism during propofol anaesthesia in healthy subjects studied with positron emission tomography[J]. Acta Anaesthesiol Scand, 2012, 56(2):  248-255. DOI: 10.1111/j.1399-6576.2011.02561.x.
 
[13]GONZLEZ-CORREA J A, CRUZ-ANDREOTTI E, ARREBOLA M M, et al. Effects of propofol on the leukocyte nitric oxide pathway:  in vitro and ex vivo studies in surgical patients[J]. Naunyn Schmiedebergs Arch Pharmacol, 2008, 376(5):  331-339. DOI: 10.1007/s00210-007-0220-4.
 
[14]CALDAS J R, HAUNTON V J, PANERAI R B, et al. Cerebral autoregulation in cardiopulmonary bypass surgery:  a systematic review[J]. Interact Cardiovasc Thorac Surg, 2018, 26(3):  494-503. DOI: 10.1093/icvts/ivx357.
 
[15]BROWN CH 4th, NEUFELD K J, TIAN J, et al. Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients:  a nested randomized clinical trial[J]. JAMA Surg, 2019, 154(9):  819-826. DOI: 10.1001/jamasurg.2019.1163.
 
[16]HORI D, BROWN C, ONO M,et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium[J]. Br J Anaesth, 2014, 113(6):  1009-1017. DOI: 10.1093/bja/aeu319.
 
[17]CONTI A, IACOPINO D G, FODALE V,et al. Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia:  transcranial Doppler study under bispectral index monitoring[J]. Br J Anaesth, 2006, 97(3):  333-339. DOI: 10.1093/bja/ael169.
 
[18]OGAWA Y, IWASAKI K, SHIBATA S,et al. The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis[J]. Anesth Analg, 2006, 102(2):  552-559. DOI: 10.1213/01.ane.0000189056.96273.48.
 
[19]BURKHART C S, ROSSI A, DELL-KUSTER S,et al. Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation[J]. Br J Anaesth, 2011, 107(5):  742-748. DOI: 10.1093/bja/aer252.
 
[20]GOETTEL N, PATET C, ROSSI A,et al. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia:  a prospective cohort study of two age groups[J]. J Clin Monit Comput, 2016, 30(3):  255-264. DOI: 10.1007/s10877-015-9754-z.
 
[21]王存川, 黄璟, 胡友主, 等. 肝门阻断技术在腹腔镜肝部分切除术中的应用[J]. 中华外科杂志, 2009, 47(11):  874-875. DOI: 10.3760/cma.j.issn.0529-5815.2009.11.020. 
 
WANG C C, HUANG J, HU Y Z,et al. Application of hepatic hilum blocking technique in laparoscopic partial hepatectomy[J]. Chin J Surg, 2009, 47(11):  874-875. DOI: 10.3760/cma.j.issn.0529-5815.2009.11.020.
 
[22]BRADY K, JOSHI B, ZWEIFEL C,et al. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass[J]. Stroke, 2010, 41(9):  1951-1956. DOI: 10.1161/STROKEAHA.109.575159.
 
[23]MAHANNA-GABRIELLI E, SCHENNING K J, ERIKSSON L I,et al. State of the clinical science of perioperative brain health:  report from the American Society of Anesthesiologists Brain Health Initiative Summit 2018[J]. Br J Anaesth, 2019, 123(4):  464-478. DOI: 10.1016/j.bja.2019.07.004.
 
[24]RUDOLPH J L, MARCANTONIO E R. Review articles:  postoperative delirium:  acute change with long-term implications[J]. Anesth Analg, 2011, 112(5):  1202-1211. DOI: 10.1213/ANE.0b013e3182147f6d.
 
[25]LI Q, ZHU M E, ZHANG Y R, et al. Influential factors of cerebral oxygen saturation in ?pediatric cardiovascular surgery[J]. J Central South Univ Med Sci, 2018, 43(3):  287-292. DOI: 10.11817/j.issn.1672-7347.2018.03.009.
 
[26]VALENCIA L,RODRGUEZ-PREZ A, KHLMORGEN B, et al. Does sevoflurane preserve regional cerebral oxygen saturation measured by near-infrared spectroscopy better than propofol? [J]. Ann Fr Anesth Reanim, 2014, 33(4):  e59-e65. DOI: 10.1016/j.annfar.2013.12.020.
 
[27]SCHOPFER L, HABRE W, PICHON I,et al. Effect of permissive mild hypercapnia on cerebral vasoreactivity in infants:  a randomized controlled crossover trial[J]. Anesth Analg, 2021, 133(4):  976-983. DOI: 10.1213/ANE.0000000000005325.
 
[28]SHARMA H S,PONTN E, GORDH T, et al. Propofol promotes blood-brain barrier breakdown and heat shock protein (HSP 72 kd) activation in the developing mouse brain[J]. CNS Neurol Disord Drug Targets, 2014, 13(9):  1595-1603. DOI: 10.2174/1871527313666140806122906.
 
[29]SWEENEY M D, ZHAO Z, MONTAGNE A,et al. Blood-brain barrier:  from physiology to disease and back[J]. Physiol Rev, 2019, 99(1):  21-78. DOI: 10.1152/physrev.00050.2017.
 
[30]LIN M C, CHEN C L, YANG T T,et al. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo[J]. Toxicol Appl Pharmacol, 2012, 265(2):  253-262. DOI: 10.1016/j.taap.2012.08.013.
 
[31]刘强, 韩如泉. 脑氧饱和度监测方法及其应用进展[J]. 国际麻醉学与复苏杂志, 2018, 39(3):  234-238. DOI: 10.3760/cma.j.issn.1673-4378.2018.03.009. 
 
LIU Q, HAN R Q. Advances in cerebral oxygen saturation monitoring and its application[J]. Int J Anesthesiol Resusc, 2018, 39(3):  234-238. DOI: 10.3760/cma.j.issn.1673-4378.2018.03.009.
 
[32]OKONKWO D O, SHUTTER L A, MOORE C,et al. Brain oxygen optimization in severe traumatic brain injury phase-II:  a phase II randomized trial[J]. Crit Care Med, 2017, 45(11):  1907-1914. DOI: 10.1097/CCM.0000000 000002619.
 
[33]HUANG Z H, HUANG B, WEI Q S, et al. The protective effects of benzbromarone against propofol-induced inflammation and injury in human brain microvascular endothelial cells (HBMVECs)[J]. Neurotox Res, 2021, 39(5):  1449-1458. DOI: 10.1007/s12640-021-00387-1.
 
[34]LIU Y L, CHEN F, ZHAO W B, et al. Pulmonary artery pressure and variations in arterial blood pressure during the induction period of general anesthesia in elderly patients[J]. J Coll Physicians Surg Pak, 2021, 31(1):  8-13. DOI: 10.29271/jcpsp.2021.01.8.
 
[35]LASSEN N A. Cerebral blood flow and oxygen consumption inman[J]. Physiol Rev, 1959, 39(2):  183-238. DOI: 10.1152/physrev.1959.39.2.183.
 
[36]WESSELINK E M, KAPPEN T H, TORN H M,et al. Intraoperative hypotension and the risk of postoperative adverse outcomes:  a systematic review[J]. Br J Anaesth, 2018, 121(4):  706-721. DOI: 10.1016/j.bja.2018.04.036.
 
[37]RICKARDS C A. Cerebral blood-flow regulation during hemorrhage[J]. Compr Physiol, 2015, 5(4):  1585-1621. DOI: 10.1002/cphy.c140058.
 
[38]JONES-MUHAMMAD M, WARRINGTON J P. Cerebralblood flow regulation in pregnancy, hypertension, and hypertensive disorders of pregnancy[J]. Brain Sci, 2019, 9(9):  E224. DOI: 10.3390/brainsci9090224.

更新日期/Last Update: 2022-09-23