[1]何忻宜,明叶,谭浩,等.高糖及巨噬细胞共培养对成骨细胞氧化应激及自噬的影响[J].陆军军医大学学报(原第三军医大学学报),2022,44(18):1809-1818.
 HE Xinyi,MING Ye,TAN Hao,et al.Effects of hyperglycemia and macrophage co-culture on oxidative stress and autophagy in osteoblasts [J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):1809-1818.
点击复制

高糖及巨噬细胞共培养对成骨细胞氧化应激及自噬的影响(/HTML )
分享到:

陆军军医大学学报(原第三军医大学学报)[ISSN:1000-5404/CN:51-1095/R]

卷:
44卷
期数:
2022年第18期
页码:
1809-1818
栏目:
基础医学
出版日期:
2022-09-30

文章信息/Info

Title:
Effects of hyperglycemia and macrophage co-culture on oxidative stress and autophagy in osteoblasts 
作者:
何忻宜明叶谭浩赵振兴敬劲孟雪欢李想郑雷蕾
重庆医科大学附属口腔医院,口腔疾病与生物学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室
Author(s):
HE Xinyi MING Ye TAN Hao ZHAO Zhenxing JING Jing MENG Xuehuan LI Xiang ZHENG Leilei

Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401145, China

关键词:
高血糖巨噬细胞极化共培养氧化应激细胞自噬
Keywords:
hyperglycemia macrophage polarization co-culture oxidative stress autophagy
分类号:
R322.71; R329.25; R363.272
文献标志码:
A
摘要:

目的探讨在高糖环境下,与巨噬细胞Raw264.7共培养的成骨细胞MC3T3-E1氧化应激、自噬及细胞凋亡的变化。方法①根据培养基的葡萄糖浓度将Raw264.7细胞分为25、30、35 mmol/L 3组,流式细胞术检测细胞CD86表达;RT-qPCR检测IL-6、TNF-α、iNOS、NOX2、p47phox的mRNA表达水平,Western blot检测iNOS的蛋白表达水平,DCFH-DA探针检测ROS水平。②MC3T3-E1细胞分为正常糖单独培养组(5.5 mmol/L葡萄糖浓度,5.5-Mono组)、高糖单独培养组(35 mmol/L葡萄糖浓度,35-Mono组)和高糖共培养组(与Raw264.7细胞共培养24 h,35-Co组)3组,DCFH-DA探针检测MC3T3-E1细胞ROS水平;透射电镜、Western blot检测MC3T3-E1细胞自噬水平;流式细胞术检测MC3T3-E1细胞凋亡水平。结果高糖下Raw264.7细胞表面标志CD86表达增加,与25 mmol/L组相比,35 mmol/L组IL-6、TNF-α、iNOS的mRNA表达水平显著增加(P<0.05),iNOS蛋白表达水平显著增加(P<0.05),ROS水平增加,NOX2、p47phox的mRNA表达水平显著增加(P<0.05);与5.5-Mono组相比,35-Mono、35-Co组MC3T3-E1细胞ROS均增加且35-Co组增加更明显,透射电镜显示35-Co组自噬溶酶体数量明显增加,35-Co组MC3T3-E1细胞中LC3-II及SQSTM1/p62的蛋白表达水平明显升高(P<0.05),35-Co组的MC3T3-E1细胞凋亡率较35-Mono组明显升高(P<0.05)。结论与高糖下M1向极化的Raw264.7细胞共培养会诱导MC3T3-E1细胞凋亡,该作用可能与MC3T3-E1细胞胞内ROS增加和自噬过强有关。

Abstract:

ObjectiveTo evaluate the effects of high glucose on oxidative stress, autophagy, and apoptosis in MC3T3-E1 cells co-cultured with Raw264.7 cells. Methods①Raw264.7 cells were separated into 3 groups based on the glucose levels in the medium (25, 30, and 35 mmol/L). Flow cytometry was used to detect CD86 expression. RT-qPCR was employed to detect the mRNA expression levels of IL-6, TNF-α, iNOS, NOX2, and p47phox in Raw264.7 cells. Western blotting was used to detect the protein expression level of iNOS. The DCFH-DA probe was used to measure the level of reactive oxygen species (ROS) in Raw264.7 cells. ②MC3T3-E1 cells were divided into 3 groups: normal glucose group (5.5 mmol/L glucose, 5.5-Mono), high glucose mono-culture group (35 mmol/L glucose, 35-Mono) and high glucose co-culture group (co-cultured with Raw264.7 for 24 h, 35-Co). The ROS level of MC3T3-E1 cells were detected by DCFH-DA probe. The autophagic level was assessed by transmission electron microscopy (TEM) and the expression of related proteins was detected with Western blotting. Flow cytometry was applied to determine the rate of apoptosis. ResultsCompared with the normal glucose group, the expression level of CD86 in Raw 264.7 cells was increased in other high glucose groups. Compared with the 25 mmol/L group, the mRNA levels of IL-6, TNF-α, iNOS, NOX2, and p47phox were increased (P<0.05), the protein level of iNOS was elevated (P<0.05) and the ROS level in the Raw264.7 cells was raised in the 35mmol/L group as well. Compared with the normal glucose group,the ROS level of MC3T3-E1 cells in the high glucose groups was increased, especially in high glucose co-culture group. The number of autophagolysosomes in the MC3T3-E1 cells were increased sharply in the high glucose co-culture group. The protein levels of LC3-II and SQSTM1/p62 in MC3T3-E1 cells were increased significantly in the high glucose co-culture group (P<0.05). The apoptotic rate of MC3T3-E1 cells was significantly higher in the high glucose co-culture group than the high glucose mono-culture group (P<0.05). ConclusionCo-culture with M1-polarized Raw264.7 cells under high glucose induces apoptosis in MC3T3-E1 cells, which may be related to the production of ROS and over-enhancement of autophagy in MC3T3-E1 cells.

参考文献/References:

[1]TAN Y, ZHANG Z G, ZHENG C, et al. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence[J]. Nat Rev Cardiol, 2020, 17(9): 585-607. DOI: 10.1038/s41569-020-0339-2. 
 
[2]KIMY T, CHUNG H J, PARK B R, et al. Risk of cardiovascular disease and chronic kidney disease according to 2017 blood pressure categories in diabetes mellitus[J]. Hypertension, 2020, 76(3): 766-775. DOI: 10.1161/HYPERTENSIONAHA.120.15320. 
 
[3]COLEJ B, FLOREZ J C. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7): 377-390. DOI: 10.1038/s41581-020-0278-5.
 
[4]KHOSLA S, SAMAKKARNTHAI P, MONROED G, et al. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2021, 17(11): 685-697. DOI: 10.1038/s41574-021-00555-5.
 
[5]CHEN Y, HU Y, YANG L,et al. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3β/β-catenin pathway[J]. Cell Biol Int, 2017, 41(8): 822-832. DOI: 10.1002/cbin.10779.
 
[6]VELLETRI T, HUANG Y, WANG Y,et al. Loss of p53 in mesenchymal stem cells promotes alteration of bone remodeling through negative regulation of osteoprotegerin[J]. Cell Death Differ, 2021, 28(1): 156-169. DOI: 10.1038/s41418-020-0590-4.
 
[7]MUOZ J, AKHAVAN N S, MULLINS A P, et al. Macrophage polarization and osteoporosis: a review[J]. Nutrients, 2020, 12(10): 2999. DOI: 10.3390/nu12102999.
 
[8]ZHANG B, YANG Y, YI J R, et al. Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis[J]. J Periodontal Res, 2021, 56(5): 991-1005. DOI: 10.1111/jre.12912.
 
[9]CHEN K X, JIAO Y R, LIU L, et al. Communications between bone marrow macrophages and bone cells in bone remodeling[J]. Front Cell Dev Biol, 2020, 8: 598263. DOI: 10.3389/fcell.2020.598263.
 
[10]RIOS-ARCE N D, DAGENAIS A, FEENSTRA D,et al. Loss of interleukin-10 exacerbates early type-1 diabetes-induced bone loss[J]. J Cell Physiol, 2020, 235(3): 2350-2365. DOI: 10.1002/jcp.29141.
 
[11]SHEN X, SHEN X, LI B,et al. Abnormal macrophage polarization impedes the healing of diabetes-associated tooth sockets[J]. Bone, 2021, 143: 115618. DOI: 10.1016/j.bone.2020.115618.
 
[12]YE W B, WANG J Z, LIN D S, et al. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization[J]. Int J Biol Macromol, 2020, 146: 25-35. DOI: 10.1016/j.ijbiomac.2019.12.028.
 
[13]LIU M L, WU X, CUI Y L, et al. Mitophagy and apoptosis mediated by ROS participate in AlCl 3-induced MC3T3-E1 cell dysfunction[J]. Food Chem Toxicol, 2021, 155: 112388. DOI: 10.1016/j.fct.2021.112388.
 
[14]YING S Q, TAN M M, FENG G, et al. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress[J]. Theranostics, 2020, 10(21): 9789-9807. DOI: 10.7150/thno.42508.
 
[15]VOLPE C M O, VILLAR-DELFINO P H, DOS ANJOS P M F,et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2): 119. DOI: 10.1038/s41419-017-0135-z.
 
[16]YAMAUCHI T, MAKINODAN M, TORITSUKA M,et al. Tumor necrosis factor-α expression aberration of M1/M2 macrophages in adult h igh-functioning autism spectrum disorder[J]. Autism Res, 2021, 14(11): 2330-2341. DOI: 10.1002/aur.2585.
 
[17]KIMS J, CHANG H J, VOLIN M V, et al. Macrophages are the primary effector cells in IL-7-induced arthritis[J]. Cell Mol Immunol, 2020, 17(7): 728-740. DOI: 10.1038/s41423-019-0235-z.
 
[18]LI X W, GAO F J, ZHU W H, et al. Pristane promotes anaerobic glycolysis to facilitate proinflammatory activation of macrophages and development of arthritis[J]. Exp Cell Res, 2021, 398(1): 112404. DOI: 10.1016/j.yexcr.2020.112404.
 
[19]LIECHTY C, HU J Y, ZHANG L P, et al. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds[J]. Int J Mol Sci, 2020, 21(9): 3328. DOI: 10.3390/ijms21093328.
 
[20]HEGYI B, BORST J M, BAILEY L R J,et al. Hyperglycemia regulates cardiac K+ channels via O-GlcNAc-CaMKII and NOX2-ROS-PKC pathways[J]. Basic Res Cardiol, 2020, 115(6): 71. DOI: 10.1007/s00395-020-00834-8.
 
[21]LU S, LIAO Z D, LU X Y, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes[J]. Circ Res, 2020, 126(10): e80-e96. DOI: 10.1161/CIRCRESAHA.119.316288.
 
[22]DRUMMOND G R, SELEMIDIS S, GRIENDLING K K, et al. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets[J]. Nat Rev Drug Discov, 2011, 10(6): 453-471. DOI: 10.1038/nrd3403.
 
[23]TSUKASAKI M, TAKAYANAGI H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10): 626-642. DOI: 10.1038/s41577-019-0178-8.
 
[24]XIANG G, LIU K Y, WANG T J, et al. In situ regulation of macrophage polarization to enhance osseointegration under diabetic conditions using injectable silk/sitagliptin gel scaffolds[J]. Adv Sci (Weinh), 2020, 8(3): 2002328. DOI: 10.1002/advs.202002328.
 
[25]BORCIANI G, MONTALBANO G, BALDINI N, et al. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches[J]. Acta Biomater, 2020, 108: 22-45. DOI: 10.1016/j.actbio.2020.03.043.
 
[26]WANG N N, XU P C, WU R J, et al. Timosaponin BII improved osteoporosis caused by hyperglycemia through promoting autophagy of osteoblasts via suppressing the mTOR/NFκB signaling pathway[J]. Free Radic Biol Med, 2021, 171: 112-123. DOI: 10.1016/j.freeradbiomed.2021.05.014.
 
[27]ZHENG L F, SHEN X M, YE J J, et al. Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway[J]. Life Sci, 2019, 216: 29-38. DOI: 10.1016/j.lfs.2018.11.008.
 
[28]BORGNAKKE W S. IDF Diabetes Atlas: diabetes and oral health—A two-way relationship of clinical importance[J]. Diabetes Res Clin Pract, 2019, 157: 107839. DOI: 10.1016/j.diabres.2019.107839.
 
[29]SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 363-383. DOI: 10.1038/s41580-020-0230-3.
 
[30]MARIO G, NISO-SANTANO M, BAEHRECKE E H,et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 81-94. DOI: 10.1038/nrm3735.
 
[31]YOUNG M M, TAKAHASHI Y, KHAN O,et al. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis[J]. J Biol Chem, 2012, 287(15): 12455-12468. DOI: 10.1074/jbc.M111.309104.
 
[32]NEZIS I P, SHRAVAGE B V, SAGONA A P,et al. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis[J]. J Cell Biol, 2010, 190(4): 523-531. DOI: 10.1083/jcb.201002035.
 

相似文献/References:

[1]黄莎莎,邹艳丽,谭洁,等.CX3CR1沉默介导的巨噬细胞极化减轻CCl4诱导的小鼠肝纤维化[J].陆军军医大学学报(原第三军医大学学报),2022,44(13):1314.
 HUANG Shasha,ZOU Yanli,TAN Jie,et al.CX3CR1 silencing-mediated macrophage polarization attenuates CCl4 -induced liver fibrosis in mice[J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):1314.

更新日期/Last Update: 2022-09-23