[1]胡梦婷,陈俊霞.环状RNA hsa_circ_0000231与HnRNPK相互作用对乳腺癌增殖、迁移及凋亡的影响[J].陆军军医大学学报(原第三军医大学学报),2022,44(12):1207-1220.
 HU Mengting,CHEN Junxia.Effect of circular RNA hsa_circ_0000231 interacting with HnRNPK on proliferation, migration, and apoptosis in breast cancer[J].J Amry Med Univ (J Third Mil Med Univ),2022,44(12):1207-1220.
点击复制

环状RNA hsa_circ_0000231与HnRNPK相互作用对乳腺癌增殖、迁移及凋亡的影响(/HTML )
分享到:

陆军军医大学学报(原第三军医大学学报)[ISSN:1000-5404/CN:51-1095/R]

卷:
44卷
期数:
2022年第12期
页码:
1207-1220
栏目:
基础医学
出版日期:
2022-06-30

文章信息/Info

Title:
Effect of circular RNA hsa_circ_0000231 interacting with HnRNPK on proliferation, migration, and apoptosis in breast cancer
作者:
胡梦婷陈俊霞
重庆医科大学分子医学与肿瘤研究中心
Author(s):
HU Mengting CHEN Junxia

Molecular Medicine and Cancer Research Centre, Chongqing Medical University, Chongqing, 400016, China

关键词:
乳腺癌环状RNAHsa_circ_0000231HnRNPK细胞增殖细胞凋亡移植瘤
Keywords:
 
分类号:
R394.3; R730.23; R737.9
文献标志码:
A
摘要:

目的研究环状RNA hsa_circ_0000231与HnRNPK相互作用对乳腺癌增殖、迁移及凋亡的影响。方法采用微阵列分析技术对4对乳腺癌组织及其癌旁组织的环状RNA表达谱进行分析。选取重庆医科大学附属第一医院2019年9月至2021年1月收治的乳腺癌患者癌组织标本35例,qRT-PCR验证hsa_circ_0000231的相对表达量,FISH实验检测其在细胞中的定位与表达。转染干扰质粒后,通过划痕、CCK-8、EdU、克隆形成、Hoechst33342、TUNEL、流式细胞仪和Transwell实验检测hsa_circ_0000231在乳腺癌细胞迁移、侵袭、增殖和细胞凋亡中的作用,Western blot检测CCND2、CCND1和CDK4的表达变化;在裸鼠体内研究hsa_circ_0000231对移植瘤生长的影响。RNA pulldown实验检测与hsa_circ_0000231作用的相关蛋白表达,FISH-IF实验观察hsa_circ_0000231与HnRNPK的亚细胞定位,qRT-PCR和Western blot检测c-Myc的表达变化。结果hsa_circ_0000231在乳腺癌组织(P<0.001)和乳腺癌细胞(P<0.01)中高表达,敲低hsa_circ_0000231能抑制乳腺癌细胞的增殖、迁移和侵袭,诱导细胞凋亡及细胞周期G1期阻滞,CCND2、CCND1和CDK4蛋白表达明显下降。裸鼠移植瘤实验结果表明敲低hsa_circ_0000231可抑制移植瘤生长。HnRNPK蛋白与hsa_circ_0000231共定位于细胞核,且与hsa_circ_0000231相互作用能促进c-Myc的表达。结论敲低hsa_circ_0000231能抑制乳腺癌细胞的增殖、迁移和侵袭,诱导细胞凋亡,阻滞细胞周期,并在体内抑制移植瘤生长,hsa_circ_0000231能够与HnRNPK相互作用增强c-Myc的表达,从而促进乳腺癌的发生和发展。

Abstract:

ObjectiveTo explore the effects of the interaction between circular RNA hsa_circ_0000231 and HnRNPK on the proliferation, migration and apoptosis in breast cancer. MethodsMicroarray analysis was used to investigate the expression profile of circRNAs in 4 pairs of breast cancer tissues and corresponding adjacent normal tissues. A total of 35 breast cancer tissue specimens were collected from the patients admitted in the First Affiliated Hospital of Chongqing Medical University from September 2019 to January 2021. qRT-PCR was carried out to detect the relative expression of hsa_circ_0000231, and fluorescence in situ hybridization (FISH) assay was performed to observe its location and expression in the cells. Breast cancer MCF-7 and SK-BR-3 cells were transfected with the interference vector of hsa_circ_0000231 respectively. Then cell wound healing assay, CCK-8 assay, EdU cell proliferation assay, clone formation experiment, hoechst33342 staining, TUNEL, flow cytometry and Transwell assay were adopted to determine cell migration, invasion, proliferation and apoptosis, and Western blotting was employed to measure the expression of CCND2, CCND1 and CDK4 after the knockdown. The effect of hsa_circ_0000231 on the growth of transplanted tumors was observed in nude mice. RNA pulldown assay was performed to identify hsa_circ_0000231-associated proteins, and FISH-immunofluorescence (IF) assay were employed to clarify the subcellular localization of hsa_circ_0000231 and HnRNPK. qRT-PCR and Western blotting were conducted to detect the expression of c-Myc. ResultsCircular RNA hsa_circ_ 0000231 was highly expressed in breast cancer tissues (P<0.001) and breast cancer cells (P<0.01). Down-regulation of hsa_ circ_ 0000231 inhibited the proliferation, migration and invasion of breast cancer cells, induced cell apoptosis, led to cell cycle arrest in G1 phase, and obviously decreased the expression of CCND2, CCND1 and CDK4. The results of in vivo experiments showed that knockdown of hsa_circ_0000231 inhibited the growth of tumor xenograft. HnRNPK was co-localized in the nucleus with hsa_circ_0000231, and interacted with hsa_circ_0000231 to promote c-Myc expression. ConclusionKnockdown of hsa_ circ_ 0000231 could suppress the proliferation, migration and invasion of breast cancer cells, induce cell apoptosis and cell cycle arrest, and inhibit tumor growth in vivo. The interaction of hsa_circ_0000231 with HnRNPK enhances the expression of c-Myc, and thus promotes the occurrence and development of breast cancer.

参考文献/References:

[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
 
[2]SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
 
[3]ZHANG Y, LIANG W, ZHANG P, et al. Circular RNAs: emerging cancer biomarkers and targets[J]. J Exp Clin Cancer Res, 2017, 36(1): 152. DOI: 10.1186/s13046-017-0624-z.
 
[4]SU M, XIAO Y H, MA J L, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers[J]. Mol Cancer, 2019, 18(1): 90. DOI: 10.1186/s12943-019-1002-6.
 
[5]ZHANG H D, JIANG L H, SUN D W, et al. CircRNA: a novel type of biomarker for cancer[J]. Breast Cancer, 2018, 25(1): 1-7. DOI: 10.1007/s12282-017-0793-9.
 
[6]YU T, WANG Y F, FAN Y, et al. CircRNAs in cancer metabolism: a review[J]. J Hematol Oncol, 2019, 12(1): 90. DOI: 10.1186/s13045-019-0776-8.
 
[7]LIU Y H, LI H, YE X Y, et al. Hsa_circ_0000231 knockdown inhibits the glycolysis and progression of colorectal cancer cells by regulating miR-502-5p/MYO6 axis[J]. World J Surg Oncol, 2020, 18(1): 255. DOI: 10.1186/s12957-020-02033-0.
 
[8]CHEN T, WANG X L, LI C, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation[J]. Oncogene, 2021, 40(15): 2756-2771. DOI: 10.1038/s41388-021-01739-z.
 
[9]LIU Z H, ZHOU Y, LIANG G H, et al. Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p[J]. Cell Death Dis, 2019, 10(2): 55. DOI: 10.1038/s41419-018-1287-1.
 
[10]XU Y J, WU W, HAN Q, et al. Post-translational modification control of RNA-binding protein hnRNPK function[J]. Open Biol, 2019, 9(3): 180239. DOI: 10.1098/rsob.180239.
 
[11]BARBORO P, FERRARI N, BALBI C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression[J]. Cancer Lett, 2014, 352(2): 152-159. DOI: 10.1016/j.canlet.2014.06.019.
 
[12]JI W F, ZHANG W W, WANG X, et al. c-Myc regulates the sensitivity of breast cancer cells to palbociclib via c-Myc/miR-29b-3p/CDK6 axis[J]. Cell Death Dis, 2020, 11(9): 760. DOI: 10.1038/s41419-020-02980-2.
 
[13]林莉, 侯俊明, 田博, 等. 乳腺癌Wnt信号通路关键因子β-catenin的突变和表达[J]. 中国肿瘤临床与康复, 2018, 25(5): 513-516. DOI: 10.13455/j.cnki.cjcor.2018.05.01. 
 
LIN L, HOU J M, TIAN B, et al. Mutation and expression of key factor β-catenin in Wnt signaling pathway in breast cancer[J]. Chin J Clin Oncol Rehabilit, 2018, 25(5): 513-516. DOI: 10.13455/j.cnki.cjcor.2018.05.01.
 
[14]FERLAY J, COLOMBET M, SOERJOMATARAM I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144(8): 1941-1953. DOI: 10.1002/ijc.31937.
 
[15]SHI Y, JIA X, XU J. The new function of circRNA: translation[J]. Clin Transl Oncol, 2020, 22(12): 2162-2169. DOI: 10.1007/s12094-020-02371-1.
 
[16]牛亚倩, 常钰玲, 刘芳, 等. 环状RNA作为微小RNA海绵在肿瘤进展中的作用[J]. 中国生物制品学杂志, 2022, 35(1): 119-122. DOI: 10.13200/j.cnki.cjb.003523. 
 
NIU Y Q, CHANG Y L, LIU F, et al. Role of circular RNA as miRNA sponges in tumor progression[J]. Chin J Biol, 2022, 35(1): 119-122. DOI: 10.13200/j.cnki.cjb.003523.
 
[17]潘大维, 赵源, 梁佳卉, 等. 环状RNA翻译在癌症中的研究进展[J]. 生命科学, 2021, 33(9): 1153-1160. DOI: 10.13376/j.cbls/20210127. 
 
PAN D W, ZHAO Y, LIANG J H, et al. Advances in circular RNAs translation in cancers[J]. Chin Bull Life Sci, 2021, 33(9): 1153-1160. DOI: 10.13376/j.cbls/20210127.
 
[18]VROMMAN M, VANDESOMPELE J, VOLDERS P J. Closing the circle: current state and perspectives of circular RNA databases[J]. Brief Bioinform, 2021, 22(1): 288-297. DOI: 10.1093/bib/bbz175.
 
[19]HAN B, CHAO J, YAO H H. Circular RNA and its mechanisms in disease: from the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. DOI: 10.1016/j.pharmthera.2018.01.010.
 
[20]VO J N, CIESLIK M, ZHANG Y J, et al. The landscape of circular RNA in cancer[J]. Cell, 2019, 176(4): 869-881.e13. DOI: 10.1016/j.cell.2018.12.021.
 
[21]TCHAKARSKA G, SOLA B. The double dealing of cyclin D1[J]. Cell Cycle, 2020, 19(2): 163-178. DOI: 10.1080/15384101.2019.1706903.
 
[22]PIROZZI F, LEE B, HORSLEY N, et al. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: a case series and review of inverse brain growth phenotypes[J]. Am J Med Genet A, 2021, 185(9): 2719-2738. DOI: 10.1002/ajmg.a.62362.
 
[23]MONTALTO F I, DE AMICIS F. Cyclin D1 in cancer: a molecular connection for cell cycle control, adhesion and invasion in tumor and stroma[J]. Cells, 2020, 9(12): 2648. DOI: 10.3390/cells9122648.
 
[24]YOSHIDA G J. Emerging roles of Myc in stem cell biology and novel tumor therapies[J]. J Exp Clin Cancer Res, 2018, 37(1): 173. DOI: 10.1186/s13046-018-0835-y.
 

相似文献/References:

[1]李杰,李中虎,江鹏,等.环状RNA-IARS在胰腺癌中的表达及临床意义[J].陆军军医大学学报(原第三军医大学学报),2018,40(13):1229.
 LI Jie,LI Zhonghu,JIANG Peng,et al.Expression of circRNA-IARS in pancreatic carcinoma and its clinical significance[J].J Amry Med Univ (J Third Mil Med Univ),2018,40(12):1229.

更新日期/Last Update: 2022-06-24