[1]张人子,李晟,王导新.隐丹参酮减轻LPS诱导的ARDS小鼠早期肺纤维化及机制研究[J].陆军军医大学学报(原第三军医大学学报),2022,44(18):1819-1825.
 ZHANG Renzi,LI Sheng,WANG Daoxin.Effect and mechanism of cryptotanshinone on early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome in mice [J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):1819-1825.
点击复制

隐丹参酮减轻LPS诱导的ARDS小鼠早期肺纤维化及机制研究(/HTML )
分享到:

陆军军医大学学报(原第三军医大学学报)[ISSN:1000-5404/CN:51-1095/R]

卷:
44卷
期数:
2022年第18期
页码:
1819-1825
栏目:
基础医学
出版日期:
2022-09-30

文章信息/Info

Title:
Effect and mechanism of cryptotanshinone on early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome in mice 
作者:
张人子李晟王导新
重庆医科大学附属第二医院呼吸与危重症医学科
Author(s):
ZHANG Renzi LI Sheng WANG Daoxin

Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

关键词:
急性呼吸窘迫综合征急性肺损伤隐丹参酮炎症内皮间质转化
Keywords:
acute respiratory distress syndrome acute lung injury cryptotanshinone inflammation endothelial-to-mesenchymal transition
分类号:
R285.5; R363.21; R563.8
文献标志码:
A
摘要:

目的探讨隐丹参酮(cryptotanshinone,CTS)对脂多糖(lipopolysaccharide,LPS)诱导的急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)小鼠的早期肺纤维化的影响及其可能的作用机制。方法将40只8周龄雄性C57BL/6J小鼠随机分为正常组、模型组、处理组、CTS组(n=10)。模型组采用气管滴注LPS(5 mg/kg)制备ARDS模型。处理组在ARDS建模前腹腔注射CTS(60 mg/kg) 预处理3 d,建模后再连续予以CTS 7 d。正常组和CTS组分别注射等体积的无菌磷酸盐缓冲液(phosphate-buffered saline,PBS)或CTS。末次给药24 h后处死小鼠,取支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)及肺组织。通过HE染色、肺组织湿/干质量(wet-to-dry,W/D)比值、BALF中蛋白浓度和总细胞计数评估肺组织损伤情况;采用酶联免疫吸附试验(ELISA)检测BALF中炎症因子水平;通过Masson染色及羟脯氨酸(hydroxyproline ,HYP)含量检测评估肺组织纤维化程度;利用免疫组化染色或Western blot检测VE-cadherin、CD31、波形蛋白(Vimentin)、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的蛋白表达。结果与正常组比较,模型组的肺组织W/D、BALF中总细胞数胞计数和蛋白浓度升高,BALF中的TGF-β1、TNF-α、IL-1β、IL-6升高,IL-10降低(P<0.05),小鼠肺组织出现肺损伤和早期肺纤维化;HYP含量升高(P<0.05);Vimentin、α-SMA的表达升高,而VE-cadherin、CD31的表达隆低(P<0.05)。与模型组比较,处理组的肺组织W/D、 BALF中总细胞计数和蛋白浓度降低,BALF 中的TGF-β1、TNF-α、IL-1β、IL-6降低,IL-10升高(P<0.05);肺损伤和早期肺纤维化程度明显减轻,肺损伤评分和肺纤维化程度评分降低(P<0.05);HYP含量显著降低(P<0.05);Vimentin、α-SMA的表达降低,但VE-cadherin、CD31的表达增强(P<0.05)。结论CTS可能通过抑制LPS刺激后肺组织中的内皮间质转化(endothelial-to-mesenchymal transition,EndMT)过程从而减轻ARDS小鼠早期肺纤维化。

Abstract:

ObjectiveTo investigate the effects and underlying mechanism of cryptotanshinone (CTS) on early pulmonary fibrosis in mice with lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS). MethodsForty male C57BL/6J mice (8 weeks old) were randomly divided into control group, model group, treatment group, and CTS group, with 10 mice in each group. A ARDS model was established by intratracheal instillation of LPS (5 mg/kg). The mice in the treatment group was intraperitoneally pretreated with CTS (60 mg/kg) for 3 d before modeling, followed by CTS administion for 7 consecutive days. Similarly, the mice of the control and CTS groups were injected with an equivalent volume of sterile phosphate-buffered saline (PBS) or CTS, respectively. The mice were sacrificed in 24 h after the last challenge, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. The injury of lung was observed with HE staining, lung wet-to-dry (W/D) ratio, total protein concentration and total cell number in BALF. The levels of inflammatory cytokines in BALF were determined by enzyme-linked immunosorbent assay (ELISA). The fibrosis of lung was characterized by Masson staining and content of hydroxyproline (HYP). The protein levels of VE-cadherin, CD31, Vimentin and α-smooth muscle actin(α-SMA) were detected by immunohistochemistry or Western blotting. ResultsObviously increased lung W/D ratio and total protein concentration and total cell number in BALF, elevated contents of TNF-α, TGF-β1, IL-1β and IL-6 while reduced content of IL-10 in BALF were seen in the model group when compared with the control group (P<0.05).  Compared with the model group, the treatment group had significantly decreased lung W/D ratio and total protein concentration and total cell number in BALF, down-regulated levels of IL-1β, IL-6, TNF-α and TGF-β1 and up-regulated level of IL-10 in BALF (P<0.05). In addition, CTS also ameliorated lung injury and early fibrosis, decreased lung injury and fibrosis score, and reduced HYP content in LPS-induced ARDS (P<0.05), up-regulated the VE-cadherin and CD31 levels, and suppressed the Vimentin and α-SMA levels (P<0.05). ConclusionCTS alleviates LPS-induced early pulmonary fibrosis in ARDS mice, and its underlying mechanism may be related to the inhibition of endothelial-to-mesenchymal transition (EndMT).

参考文献/References:

[1]MATTHAYM A, ZEMANS R L, ZIMMERMAN G A, et al. Acute respiratory distress syndrome[J]. Nat Rev Dis Primers, 2019, 5(1): 18. DOI: 10.1038/s41572-019-0069-0.
 
[2]LIUQ M, CHU H Y, MA Y Y, et al. Salvianolic acid B attenuates experimental pulmonary fibrosis through inhibition of the TGF-β signaling pathway[J]. Sci Rep, 2016, 6: 27610. DOI: 10.1038/srep27610.
 
[3]HAMACHER J, LUCAS R, LIJNENH R, et al. Tumor necrosis factor-alpha and angiostatin are mediators of endothelial cytotoxicity in bronchoalveolar lavages of patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med, 2002, 166(5): 651-656. DOI: 10.1164/rccm.2109004.
 
[4]RAGHU G, COLLARDH R, EGAN J J, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183(6): 788-824. DOI: 10.1164/rccm.2009-040GL.
 
[5]MARSHALL R, BELLINGAN G, LAURENT G. The acute respiratory distress syndrome: fibrosis in the fast lane[J]. Thorax, 1998, 53(10): 815-817. DOI: 10.1136/thx.53.10.815.
 
[6]DHAINAUTJ F, CHARPENTIER J, CHICHE J D. Transforming growth factor-beta: a mediator of cell regulation in acute respiratory distress syndrome[J]. Crit Care Med, 2003, 31(4 Suppl): S258-S264. DOI: 10.1097/01.CCM.0000057901.92381.75.
 
[7]MAN S, SANCHEZ DUFFHUES G, TEN DIJKE P, et al. The therapeutic potential of targeting the endothelial-to-mesenchymal transition[J]. Angiogenesis, 2019, 22(1): 3-13. DOI: 10.1007/s10456-018-9639-0.
 
[8]MAK X, LI C L, XU J B, et al. LncRNA Gm16410 regulates PM 2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway[J]. Ecotoxicol Environ Saf, 2020, 205: 111327. DOI: 10.1016/j.ecoenv.2020.111327.
 
[9]SUZUKI T, TADA Y J, NISHIMURA R, et al. Endothelial-to-mesenchymal transition in lipopolysaccharide-induced acute lung injury drives a progenitor cell-like phenotype[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(11): L1185-L1198. DOI: 10.1152/ajplung.00074.2016.
 
[10]TANG Y, CHENY L, CHU Z, et al. Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice[J]. Eur J Pharmacol, 2014, 723: 494-500. DOI: 10.1016/j.ejphar.2013.10.019.
 
[11]ZHANG Q Y, GAN C L, LIU H Y, et al. Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis[J]. Phytother Res, 2020, 34(10): 2685-2696. DOI: 10.1002/ptr.6699.
 
[12]ZHAO J L, PATEL J, KAUR S, et al. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors[J]. Nat Commun, 2021, 12(1): 2564. DOI: 10.1038/s41467-021-22717-9.
 
[13]LIU D, ZENGB X, ZHANG S H, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, reduces acute lung injury in endotoxemic rats[J]. Crit Care Med, 2005, 33(10): 2309-2316. DOI: 10.1097/01.ccm.0000183161.81503.7d.
 
[14]ASHCROFT T, SIMPSONJ M, TIMBRELL V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale[J]. J Clin Pathol, 1988, 41(4): 467-470. DOI: 10.1136/jcp.41.4.467.
 
[15]BONAVENTURA A, VECCHI A, DAGNA L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19[J]. Nat Rev Immunol, 2021, 21(5): 319-329. DOI: 10.1038/s41577-021-00536-9.
 
[16]GEORGEP M, WELLS A U, JENKINS R G. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy[J]. Lancet Respir Med, 2020, 8(8): 807-815. DOI: 10.1016/S2213-2600(20)30225-3.
 
[17]BURNHAME L, JANSSEN W J, RICHES D W H, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance[J]. Eur Respir J, 2014, 43(1): 276-285. DOI: 10.1183/09031936.00196412.
 
[18]LI J, ZHENG Y, LI M X, et al. Tanshinone IIA alleviates lipopolysaccharide-induced acute lung injury by downregulating TRPM7 and pro-inflammatory factors[J]. J Cell Mol Med, 2018, 22(1): 646-654. DOI: 10.1111/jcmm.13350.

相似文献/References:

[1]刘红云,王建春.CD200/CD200R在大鼠脓毒症急性肺损伤中的表达[J].陆军军医大学学报(原第三军医大学学报),2012,34(15):1487.
 Liu Hongyun,Wang Jianchun.Expression profiles of CD200/CD200R in rat septic acute lung injury[J].J Amry Med Univ (J Third Mil Med Univ),2012,34(18):1487.
[2]陈露露,徐关丽,袁红梅,等.龙胆苦苷对脓毒症所致急性肺损伤小鼠的保护作用[J].陆军军医大学学报(原第三军医大学学报),2012,34(23):2392.
 Chen Lulu,Xu Guanli,Yuan Hongmei,et al.Protection of gentiopicroside on acute lung injury in sepsis mice[J].J Amry Med Univ (J Third Mil Med Univ),2012,34(18):2392.
[3]徐智,李昆霖,陈锐,等.LPS/CD14结合位点模拟肽对内毒素性大鼠急性肺损伤的治疗作用[J].陆军军医大学学报(原第三军医大学学报),2012,34(24):2469.
 Xu Zhi,Li Kunlin,Chen Rui,et al.Therapeutic effects of mimic peptide of LBP/CD14 binding site on endotoxin-induced acute lung injure in rats[J].J Amry Med Univ (J Third Mil Med Univ),2012,34(18):2469.
[4]沈世琴,朱京慈.重型颅脑损伤致急性肺损伤发病机制的实验研究[J].陆军军医大学学报(原第三军医大学学报),2007,29(14):1422.
 SHEN Shi-qin,ZHU Jing-ci.Mechanism of acute lung injury secondary to isolated severe head injury in rats[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(18):1422.
[5]邹显巍,吴珊.大鼠脑出血后脑肺组织NF-κB的表达及其在急性肺损伤中的作用[J].陆军军医大学学报(原第三军医大学学报),2007,29(19):1859.
 ZOU Xian-wei,WU Shan.Expression of NF-κB in the brain and lung and its role in acute lung injury following intracerebral hemorrhage of rats[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(18):1859.
[6]陶军,杨天德,陈祥瑞.肺上皮屏障在油酸致肺损伤后肺水肿发生中的作用[J].陆军军医大学学报(原第三军医大学学报),2006,28(03):212.
[7]王彦博,姚咏明,王强,等.丙酮酸乙酯对烫伤大鼠肺组织高迁移率族蛋白B1表达和肺损伤的影响[J].陆军军医大学学报(原第三军医大学学报),2008,30(21):1984.
 WANG Yan-bo,YAO Yong-ming,WANG Qiang,et al.Effect of ethyl pyruvate on expression of pulmonary high mobility group box-1 protein and acute lung injury in rats with delayed resuscitation after burn injury[J].J Amry Med Univ (J Third Mil Med Univ),2008,30(18):1984.
[8]杨子恒,秦志刚,黎洁钰,等.小鼠急性肾损伤致远端肺凋亡和程序性坏死的时程变化[J].陆军军医大学学报(原第三军医大学学报),2022,44(20):2098.
 ANG Ziheng,QIN Zhigang,LI Jieyu,et al.Time-course changes of remote apoptosis and necroptosis of pulmonary cells induced by acute kidney injury in mice[J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):2098.
[9]韩鹏凯,张婷,王导新.卡托普利对急性肺损伤血凝素样氧化低密度血浆脂蛋白受体-1蛋白表达的影响[J].陆军军医大学学报(原第三军医大学学报),2010,32(10):1047.
 Han Pengkai,Zhang Ting,Wang Daoxin.Captopril suppresses lectin-like oxidized LDL receptor-1 protein in rats after acute lung injury[J].J Amry Med Univ (J Third Mil Med Univ),2010,32(18):1047.
[10]王静,李雪,朱庆林,等.老鹳草素对LPS诱导的小鼠急性肺损伤的影响及机制研究[J].陆军军医大学学报(原第三军医大学学报),2022,44(22):2300.
 WANG Jing,LI Xue,ZHU Qinglin,et al.Effect of geraninn on acute lung injury induced by lipopolysaccharide in mice [J].J Amry Med Univ (J Third Mil Med Univ),2022,44(18):2300.

更新日期/Last Update: 2022-09-23