[1]邓宇辉,罗艳敏,梁芯,等.海马PGC-1α对小鼠抑郁样行为及海马各亚区星形胶质细胞数量的影响[J].陆军军医大学学报(原第三军医大学学报),2022,44(10):975-983.
 DENG Yuhui,LUO Yanmin,et al.Effects of hippocampal PGC-1α on depression-like behaviors and number of astrocytes in hippocampal subregions in mice[J].J Amry Med Univ (J Third Mil Med Univ),2022,44(10):975-983.
点击复制

海马PGC-1α对小鼠抑郁样行为及海马各亚区星形胶质细胞数量的影响(/HTML )
分享到:

陆军军医大学学报(原第三军医大学学报)[ISSN:1000-5404/CN:51-1095/R]

卷:
44卷
期数:
2022年第10期
页码:
975-983
栏目:
神经科学
出版日期:
2022-05-30

文章信息/Info

Title:
Effects of hippocampal PGC-1α on depression-like behaviors and number of astrocytes in hippocampal subregions in mice
作者:
邓宇辉罗艳敏梁芯蒋林王瑾唐静李静黎悦肖凯祝佩林郭一静唐勇吴宏
重庆医科大学基础医学院:组织与胚胎学教研室,干细胞与组织工程研究室,生理学教研室,病理生理学教研室,实验教学管理中心
Author(s):
DENG Yuhui1 2 LUO Yanmin3 LIANG Xin4 JIANG Lin5 WANG Jin1 2 TANG Jing1 2 LI Jing1 2 LI Yue1 2 XIAO Kai1 2 ZHU Peilin1 2 GUO Yijing1 2 TANG Yong1 2 WU Hong1 2
1Department of Histology and Embryology, 2Laboratory of Stem Cells and Tissue Engineering, 3Department of Physiology, 4Department of Pathophysiology, 5Experimental Teaching and Management Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
 
关键词:
PGC-1&alpha海马抑郁样行为星形胶质细胞体视学小鼠
Keywords:
 
分类号:
R319;R322.81;R749.4
文献标志码:
A
摘要:

目的探讨定向沉默/过表达小鼠海马中过氧化物酶体增殖物激活受体γ辅激活因子1α(PPAR gamma coactivator 1 alpha,PGC-1α)对小鼠抑郁样行为和海马各亚区胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性(+)星形胶质细胞数量的影响。方法选取32只6~8周龄的雄性C57BL/6小鼠,在经过适应性喂养和糖水偏好基线调整后按照简单随机抽样方法分为空病毒组(n=14)、PGC-1α沉默组(n=11)和PGC-1α过表达组(n=7),分别采用海马立体定位注射技术以腺相关病毒为载体定向沉默/过表达小鼠海马中PGC-1α基因。运用糖水偏好实验和强迫游泳实验评估小鼠的抑郁样行为,采用免疫组织化学和现代体视学相结合的方法对小鼠海马各亚区中GFAP+星形胶质细胞数量进行精确三维定量研究。结果与空病毒组小鼠相比,PGC-1α沉默组小鼠的糖水偏好百分比显著降低(P<0.01),强迫游泳实验不动时间显著增加(P<0.05),海马CA1和DG区中的GFAP+星形胶质细胞数量显著增加(P<0.05);而PGC-1α过表达组小鼠的强迫游泳实验不动时间显著减少(P<0.01),海马CA1和DG区中的GFAP+星形胶质细胞数量显著减少(P<0.05)。空病毒组与PGC-1α过表达组小鼠的糖水偏好百分比差异无统计学意义。沉默/过表达海马PGC-1α对CA3区星形胶质细胞数量的影响差异无统计学意义。结论小鼠海马PGC-1α与抑郁样行为密切相关,并参与海马CA1和DG区内GFAP+星形胶质细胞数量的调节。

Abstract:

ObjectiveTo investigate the effects of targeted silence/overexpression of PGC-1α in the hippocampus on depression-like behaviors in mice and on the number of glial fibrillary acidic protein positive (GFAP+) astrocytes in the subregions of the hippocampus. MethodsAfter adaptive feeding and sucrose preference baseline adjustment, 32 male C57BL/6 mice aged 6~8 weeks were randomly divided into empty virus group (n=14), PGC-1α silencing group (n=11) and PGC-1α overexpression group (n=7). The latter 2 groups were injected with adeno-associated virus (AAV)-mediated genes silencing or overexpressing PGC-1α in the hippocampus, respectively, with aid of stereotactic injection technique. Sucrose preference test (SPT) and forced swimming test (FST) were performed to assess the depression-like behaviors, and the number of GFAP+ astrocytes in each hippocampal subregion was accurately quantified in 3 dimensions by immunohistochemistry and stereology.  ResultsAs compared with the empty virus group, the PGC-1α silencing group had significantly decreased percentage of sucrose preference (P<0.01), prolonged immobility time in FST (P<0.05), and larger number of GFAP+ astrocytes in both CA1 and DG subregions(P<0.05). However, the immobility time in FST was remarkably shortened in the PGC-1α overexpression group (P<0.01), with the number of GFAP+ astrocytes in CA1 and DG subregions diminished (P<0.05). There was no significant difference in the percentage of sucrose preference between the empty virus group and PGC-1α overexpression group, and silencing or overexpressing PGC-1α showed no obvious impact on the number of astrocytes in CA3 subregion. ConclusionPGC-1α is closely associated with the depression-like behaviors and participates in regulating the number of GFAP+ astrocytes in CA1 and DG subregions in mice.

参考文献/References:

[1]MALHI G S, MANN J J. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. DOI: 10.1016/s0140-6736(18)31948-2.
 
[2]BARNETT R. Depression[J]. Lancet, 2019, 393(10186): 2113. DOI: 10.1016/S0140-6736(19)31151-1. 
 
[3]BELLEAU E L, TREADWAY M T, PIZZAGALLI D A. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology[J]. Biol Psychiatry, 2019, 85(6): 443-453. DOI: 10.1016/j.biopsych.2018.09.031.
 
[4]HAO Z Y, ZHONG Y, MA Z J, et al. Abnormal resting-state functional connectivity of hippocampal subfields in patients with major depressive disorder[J]. BMC Psychiatry, 2020, 20(1): 71. DOI: 10.1186/s12888-020-02490-7.
 
[5]TANG J, LIANG X, ZHANG Y, et al. The effects of running exercise on oligodendrocytes in the hippocampus of rats with depression induced by chronic unpredictable stress[J]. Brain Res Bull, 2019, 149: 1-10. DOI: 10.1016/j.brainresbull.2019.04.001.
 
[6]WAN Z, ROOT-MCCAIG J, CASTELLANI L, et al. Evidence for the role of AMPK in regulating PGC-1 alpha expression and mitochondrial proteins in mouse epididymal adipose tissue[J]. Obesity (Silver Spring), 2014, 22(3): 730-738. DOI: 10.1002/oby.20605.
 
[7]RYAN K M, PATTERSON I, MCLOUGHLIN D M. Peroxisome proliferator-activated receptor gamma co-activator-1 alpha in depression and the response to electroconvulsive therapy[J]. Psychol Med, 2019, 49(11): 1859-1868. DOI: 10.1017/S0033291718002556.
 
[8]SZALARDY L, MOLNAR M F, ZADORI D, et al. Non-motor behavioral alterations of PGC-1α-deficient mice—a peculiar phenotype with slight male preponderance and no apparent progression[J]. Front Behav Neurosci, 2018, 12: 180. DOI: 10.3389/fnbeh.2018.00180.
 
[9]WANG J, TANG J, LIANG X, et al. Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise[J]. Transl Psychiatry, 2021, 11(1): 222. DOI: 10.1038/s41398-021-01339-1.
 
[10]YU X Z, NAGAI N G, KHAKH B S. Improved tools to study astrocytes[J]. Nat Rev Neurosci, 2020, 21(3): 121-138. DOI: 10.1038/s41583-020-0264-8.
 
[11]HAN R T, KIM R D, MOLOFSKY A V, et al. Astrocyte-immune cell interactions in physiology and pathology[J]. Immunity, 2021, 54(2): 211-224. DOI: 10.1016/j.immuni.2021.01.013.
 
[12]SZALARDY L, ZADORI D, PLANGAR I, et al. Neuro-pathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases[J]. Neurodegener Dis, 2013, 12(4): 177-188. DOI: 10.1159/000346267.
 
[13]ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nat Neurosci, 2021, 24(3): 312-325. DOI: 10.1038/s41593-020-00783-4.
 
[14]LIN J D, WU P H, TARR P T, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice[J]. Cell, 2004, 119(1): 121-135. DOI: 10.1016/j.cell.2004.09.013.
 
[15]HUANG R R, ZHANG Y, BAI Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors[J]. Biol Psychiatry, 2020, 88(5): 392-404. DOI: 10.1016/j.biopsych.2020.02.018.
 
[16]FU X X, JIAO J, QIN T T, et al. A new perspective on ameliorating depression-like behaviors: suppressing neuroinflammation by upregulating PGC-1α[J]. Neurotox Res, 2021, 39(3): 872-885. DOI: 10.1007/s12640-020-00292-z.
 
[17]WANG Y, NI J, ZHAI L Y, et al. Inhibition of activated astrocyte ameliorates lipopolysaccharide-induced depressive-like behaviors[J]. J Affect Disord, 2019, 242: 52-59. DOI: 10.1016/j.jad.2018.08.015.
 
[18]SCHMITZ C, HOF P R. Design-based stereology in neuroscience[J]. Neuroscience, 2005, 130(4): 813-831. DOI: 10.1016/j.neuroscience.2004.08.050.
 
[19]ZHAO X, VAN PRAAG H. Steps towards standardized quantification of adult neurogenesis[J]. Nat Commun, 2020, 11(1): 4275. DOI: 10.1038/s41467-020-18046-y.
 
[20]LIU M Y, YIN C Y, ZHU L J, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice[J]. Nat Protoc, 2018, 13(7): 1686-1698. DOI: 10.1038/s41596-018-0011-z.
 
[21]HARRO J. Animal models of depression: pros and cons[J]. Cell Tissue Res, 2019, 377(1): 5-20. DOI: 10.1007/s00441-018-2973-0.
 
[22]SITENESKI A, CUNHA M P, LIEBERKNECHT V, et al. Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 84(Pt A): 294-303. DOI: 10.1016/j.pnpbp.2018.03.004.
 
[23]CUNHA M P, PAZINI F L, LIEBERKNECHT V, et al. Subchronic administration of creatine produces antidepressant-like effect by modulating hippocampal signaling pathway mediated by FNDC5/BDNF/Akt in mice[J]. J Psychiatr Res, 2018, 104: 78-87. DOI: 10.1016/j.jpsychires.2018.07.001.
 
[24]GURURAJAN A, REIF A, CRYAN J F, et al. The future of rodent models in depression research[J]. Nat Rev Neurosci, 2019, 20(11): 686-701. DOI: 10.1038/s41583-019-0221-6.
 
[25]UNAL G, CANBEYLI R. Psychomotor retardation in depression: a critical measure of the forced swim test[J]. Behav Brain Res, 2019, 372: 112047. DOI: 10.1016/j.bbr.2019.112047.
 
[26]AGUDELO L Z, FEMENA T, ORHAN F, et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression[J]. Cell, 2014, 159(1): 33-45. DOI: 10.1016/j.cell.2014.07.051.
 
[27]WANG P, LI B, FAN J, et al. Additive antidepressant-like effects of fasting with β-estradiol in mice[J]. J Cell Mol Med, 2019, 23(8): 5508-5517. DOI: 10.1111/jcmm.14434.
 
[28]ALMAD A, MARAGAKIS N J. A stocked toolbox for understanding the role of astrocytes in disease[J]. Nat Rev Neurol, 2018, 14(6): 351-362. DOI: 10.1038/s41582-018-0010-2.
 
[29]ZEHNDER T, PETRELLI F, ROMANOS J, et al. Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation[J]. Cell Rep, 2021, 35(2): 108952. DOI: 10.1016/j.celrep.2021.108952.
 
[30]COBB J A, O’NEILL K, MILNER J, et al. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder[J]. Neuroscience, 2016, 316: 209-220. DOI: 10.1016/j.neuroscience.2015.12.044.
 
[31]WILLARD S L, RIDDLE D R, FORBES M E, et al. Cell number and neuropil alterations in subregions of the anterior hippocampus in a female monkey model of depression[J]. Biol Psychiatry, 2013, 74(12): 890-897. DOI: 10.1016/j.biopsych.2013.03.013.
 
[32]KESNER R P, LEE I, GILBERT P. A behavioral assessment of hippocampal function based on a subregional analysis[J]. Rev Neurosci, 2004, 15(5): 333-351. DOI: 10.1515/revneuro.2004.15.5.333.
 
[33]LI Y, LUO Y M, TANG J, et al. The positive effects of running exercise on hippocampal astrocytes in a rat model of depression[J]. Transl Psychiatry, 2021, 11(1): 83. DOI: 10.1038/s41398-021-01216-x.
 
[34]YANG C X, SUI G H, LI D, et al. Exogenous IGF-1 alleviates depression-like behavior and hippocampal mitochondrial dysfunction in high-fat diet mice[J]. Physiol Behav, 2021, 229: 113236. DOI: 10.1016/j.physbeh.2020.113236.
 
[35]SEGUELLA L, PESCE M, CAPUANO R, et al. High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors[J]. J Neuroinflamm, 2021, 18(1): 115. DOI: 10.1186/s12974-021-02164-5.
 
[36]LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487. DOI: 10.1038/nature21029.
 
[37]ZHANG H Y, WANG Y, HE Y D, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment[J]. J Neuroinflamm, 2020, 17(1): 200. DOI: 10.1186/s12974-020-01871-9.
 
[38]DU H X, CHEN X G, ZHANG L, et al. Microglial activation and neurobiological alterations in experimental autoimmune prostatitis-induced depressive-like behavior in mice[J]. Neuropsychiatr Dis Treat, 2019, 15: 2231-2245. DOI: 10.2147/NDT.S211288.
 
[39]MORSELLI E, FUENTE-MARTIN E, FINAN B, et al. Hypothalamic PGC-1α protects against high-fat diet exposure by regulating ERα[J]. Cell Rep, 2014, 9(2): 633-645. DOI: 10.1016/j.celrep.2014.09.025.
 
[40]NIJLAND P G, WITTE M E, VAN HET HOF B, et al. Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis[J]. Acta Neuropathol Commun, 2014, 2: 170. DOI: 10.1186/s40478-014-0170-2.
 
[41]VERKHRATSKY A, NEDERGAARD M. Physiology of astroglia[J]. Physiol Rev, 2018, 98(1): 239-389. DOI: 10.1152/physrev.00042.2016.

相似文献/References:

[1]黎雪梅,况利.抗抑郁药物促进抑郁模型大鼠行为和海马血管内皮细胞生长因子的表达[J].陆军军医大学学报(原第三军医大学学报),2009,31(05):430.
 LI Xue-mei,KUANG Li.Effect of antidepressant on behavior and vascular endothelial cell growth factor in hippocampus of rat model of depression[J].J Amry Med Univ (J Third Mil Med Univ),2009,31(10):430.
[2]李大奇,况利,王敏建.不同电休克方法对抑郁模型大鼠海马干扰素-γ受体表达的影响[J].陆军军医大学学报(原第三军医大学学报),2007,29(15):1494.
 LI Da-qi,KUANG Li,WANG Min-jian.Effects of electroshock on interferon gamma receptor expression in hippocampus of depressed rats[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(10):1494.
[3]耿淼,蒋宁,周文霞,等.当归芍药散对快速老化模型小鼠海马蛋白表达的影响[J].陆军军医大学学报(原第三军医大学学报),2008,30(06):477.
 GENG Miao,JIANG Ning,ZHOU Wen-xia,et al.Effect of powder of Chinese Angelica and Peony on expressions of hippocampal proteins in senescence accelerated mice[J].J Amry Med Univ (J Third Mil Med Univ),2008,30(10):477.
[4]陈建,黄缄,高钰琪,等.预缺氧对大鼠低压缺氧性脑损伤保护作用的实验研究[J].陆军军医大学学报(原第三军医大学学报),2007,29(22):2113.
 CHEN Jian,HUANG Jian,GAO Yu-qi,et al.Protective effects of hypoxia preconditioning on rat brain against hypobaric hypoxia[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(10):2113.
[5]吴喜贵,赵延东,阮怀珍.缺氧对大鼠皮层、海马NMDA受体NR1亚单位磷酸化的影响[J].陆军军医大学学报(原第三军医大学学报),2007,29(18):1742.
 WU Xi-gui,ZHAO Yan-dong,RUAN Huai-zhen.Effect of hypoxia on NR1 subunit of NMDA receptor in rat cortex and hippocampus[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(10):1742.
[6]耿明英,程远,许民辉,等.伽玛刀对红藻氨酸模型大鼠海马形态学及苔藓纤维变化的影响[J].陆军军医大学学报(原第三军医大学学报),2007,29(10):959.
 GENG Ming-ying,CHENG Yuan,XU Min-hui,et al.Effects of gamma knife on morphological changes of hippocampal formation and mossy fiber sprouting in epileptic rats induced by kainic acid[J].J Amry Med Univ (J Third Mil Med Univ),2007,29(10):959.
[7]赵延东,程赛宇,张金海,等.低压缺氧对大鼠海马CA1区神经元P2X受体表达的影响[J].陆军军医大学学报(原第三军医大学学报),2006,28(23):2302.
[8]鲁利群,赵聪敏,蒲昭霞.生长相关蛋白在缺氧缺血性脑损伤新生大鼠海马中的表达变化[J].陆军军医大学学报(原第三军医大学学报),2006,28(21):2160.
[9]张映琦,廖维宏,迟路湘,等.癫痫状态大鼠海马GABA、GABAA受体α5亚单位表达的动态变化[J].陆军军医大学学报(原第三军医大学学报),2006,28(20):2047.
[10]周红梅,孔祥英,何念海,等.高压氧对缺血缺氧性脑损伤幼鼠海马超微结构及主动回避反应的影响[J].陆军军医大学学报(原第三军医大学学报),2006,28(19):1973.

更新日期/Last Update: 2022-05-23