CHENG Fangling,WANG Hongyong,YANG Yongjian.Effect and mechanism of Dickkopf-related protein 1 on urinary sodium excretion in spontaneously hypertensive rats[J].J Third Mil Med Univ,2020,42(19):1920-1929.

Dickkopf相关蛋白1对自发性高血压大鼠尿钠排泄的作用及机制(/HTML )




Effect and mechanism of Dickkopf-related protein 1 on urinary sodium excretion in spontaneously hypertensive rats
CHENG Fangling WANG Hongyong YANG Yongjian
Department of Cardiology, the First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000; 2Department of Cardiology, General Hospital of Western Theater Command, Chengdu, Sichuan Province, 610083; 3Department of Cardiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

目的探讨Dickkopf相关蛋白1(Dickkopf-related protein 1,DKK1)在高血压中的作用及对尿钠排泄功能的影响。方法8~10周龄雄性正常血压大鼠(Wistar-Kyoto rats,WKYs;190~210 g)、雄性原发性高血压大鼠(spontaneously hypertensive rats,SHRs;190~210g) 各12只,采用Western blot检测WKY和SHR大鼠肾脏DKK1和β-catenin蛋白表达。采用完全随机的方法,将12只WKY大鼠分成WKY+DKK1组和WKY对照组(n=6)、12只SHR大鼠分成SHR+DKK1组和SHR对照组(n=6);WKY+DKK1组和SHR+DKK1组微泵泵注重组蛋白DKK1[6 ng/(g·d)]。使用无创鼠尾测压仪测血压;代谢笼收集24 h尿量;计算24 h尿钠排泄情况,并用体质量校正。采用Western blot检测肾近端小管上皮(renal proximal tubule epithelial,RPT)细胞(WKY-RPT和SHR-RPT细胞)内DKK1和β-catenin蛋白表达;重组蛋白DKK1、DKK1 siRNA(siDKK1)和β-catenin信号抑制剂(inhibitor of β-catenin-responsive transcription,ICRT 14)、GSK3β抑制剂(6-bromoindirubin-3′-oxime,BIO,)干预细胞后,检测DKK1、β-catenin表达或钠-钾-ATP酶活性变化。结果SHR大鼠肾脏DKK1表达水平较WKY大鼠低,而β-catenin升高(即Wnt/β-catenin激活);SHR+DKK1组与SHR组相比,在埋泵术后第2周大鼠收缩压显著下降[(145.21±2.83)vs (156.07±3.08) mmHg,P<0.05],24 h尿量增加[(37.40±3.76)vs(27.24±2.30)mL/kg,P<0.05],24 h尿钠排泄增多[(0.79±0.09)vs (0.51±0.09)mmol/kg ,P<0.05]。WKY+DKK1组与WKY组间差异均无统计学意义。SHR-RPT细胞DKK1表达低于WKY-RPT细胞,而β-catenin升高;改变DKK1含量引起β-catenin改变(即Wnt/β-catenin通路活性改变)从而影响钠-钾-ATP酶活性,且钠-钾-ATP酶活性与DKK1呈负相关。结论DKK1至少部分通过抑制Wnt/β-catenin通路降低钠-钾-ATP酶活性,促进尿钠排泄降低血压。


ObjectiveTo explore the role of Dickkopf-related protein 1 (DKK1) in hypertension and its effect on urinary sodium excretion. MethodsTwelve rats with normal blood pressure (Wister Kyoto rats, WKY), and 12 primary hypertension rats (spontaneously hypertensive rats, SHRs), all male, at an age of 8~10 weeks, weighing 190~210 g, were employed in this study. The expression of DKK1 and β-catenin in the kidney of WKY and SHR rats was detected by Western blotting. Then 12 WKY rats were randomly divided into WKY+DKK1 group and WKY control group (n=6), and so were the 12 SHR rats. Recombinant protein DKK 16 ng/(g·d) was pumped into the rats from the DKK1 groups via micro-syringe. The blood pressure of all the rats was measured by non-invasive tail-cuff method. And the urine was collected by metabolic cages for 24-hour urinary volume and urinary sodium, which were adjusted with their weight. The expression of DKK1 and β-catenin protein in renal proximal tubule epithelial (RPT) cells (WKY-RPT and SHR-RPT) was detected by Western blotting. After intervention with recombinant protein DKK1, DKK1 siRNA (siDKK1), and β-catenin nuclear signal inhibitor (inhibitor of β-catenin-responsive transcription, ICRT 14), inhibitor of GSK3β (6-bromoindirubin-3′-oxime, BIO), the expression of DKK1 and β-catenin and the activity of Na+-K+-ATPase were measured. ResultsThe expression level of DKK1 was lower, while that of β-catenin (indicating Wnt/β-catenin was activated) was higher in the renal tissue of SHR rats than of WKY rats. When the SHR+DKK1 group was compared with the SHR group, the systolic blood pressure was significantly decreased at 2 weeks after implantation (145.21±2.83 vs 156.07±3.08 mmHg, P<0.05), and both urine volume (37.40±3.76 vs 27.24±2.30 mL/kg, P<0.05) and urinary sodium excretion (0.79±0.09 vs 0.51±0.09 mmol/kg, P<0.05) within 24 h were increased. There were no significant differences in above indexes between WKY+DKK1 group and WKY group. The expression of DKK1 was lower in the SHR-RPT cells than the WKY-RPT cells, and that of β-catenin was opposite. Intervention of DKK1 expression would cause the change of β-catenin (indicating the alteration of Wnt/β-catenin pathway), and thus affect the activity of Na+-K+-ATPase, and the activity of Na+-K+-ATPase was negatively correlated with DKK1. ConclusionDKK1 can reduce Na+-K+-ATPase activity at least partially by inhibiting the Wnt/β-catenin pathway, promote urinary sodium excretion and lower blood pressure.


LIU L S.2018 Chinese guidelines for the management of hypertension[J].Chin J Cardiovas Med, 2019,24(01):24-56.
[2]BORST J G, BORST-DE GEUS A. Hypertension explained by Starling's theory of circulatory homoeostasis[J]. Lancet, 1963, 1(7283): 677-682. DOI:10.1016/s0140-6736(63)91443-0.
[3]GUYTON A C, COLEMAN T G, COWLEY A V Jr, et al. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension[J]. Am J Med, 1972, 52(5): 584-594. DOI:10.1016/0002-9343(72)90050-2.
[4]JOHNSON R J, LANASPA M A, GABRIELA SNCHEZ-LOZADA L, et al. The discovery of hypertension: evolving views on the role of the kidneys, and current hot topics[J]. Am J Physiol Renal Physiol, 2015, 308(3): F167-F178. DOI:10.1152/ajprenal.00503.2014.
[5]CURTHOYS N P, MOE O W. Proximal tubule function and response to acidosis[J]. Clin J Am Soc Nephrol, 2014, 9(9): 1627-1638. DOI:10.2215/cjn.10391012. 
[6]CASTILLO A,ORTUO-PINEDA C,FLORES-MALDONADO C, et al. Ouabain modulates the adherens junction in renal epithelial cells[J]. Cell Physiol Biochem, 2019, 52(6): 1381-1397. DOI:10.33594/000000097.
[7]HATOU S, YOSHIDA S, HIGA K, et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling[J]. Stem Cells Dev, 2013, 22(5): 828-839. DOI:10.1089/scd.2012.0286.
[8]LI B M, REN J A, YANG L, et al. Lithium inhibits GSK3β activity via two different signaling pathways in neurons after spinal cord injury[J]. Neurochem Res, 2018, 43(4): 848-856. DOI:10.1007/s11064-018-2488-9.
[9]HUANG Y, LIU L, LIU A G. Dickkopf-1: Current knowledge and related diseases[J]. Life Sci, 2018, 209: 249-254. DOI:10.1016/j.lfs.2018.08.019.
[10]HIRATA H, HINODA Y, NAKAJIMA K, et al. Wnt antagonist DKK1 Acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma[J]. Int J Cancer, 2011, 128(8): 1793-1803. DOI:10.1002/ijc.25507.
[11]ABOU ZIKI M D, MANI A. Wnt signaling, a novel pathway regulating blood pressure? State of the art review[J]. Atherosclerosis, 2017, 262: 171-178. DOI:10.1016/j.atherosclerosis.2017.05.001.
[12]UELAND T, KERBLOM A, GHUKASYAN T, et al. Admission levels of DKK1 (dickkopf-1) are associated with future cardiovascular death in patients with acute coronary syndromes[J]. Arterioscler Thromb Vasc Biol, 2019, 39(2): 294-302. DOI:10.1161/ATVBAHA.118.311042.
[13]REGISTER T C, HRUSKA K A, DIVERS J, et al. Plasma Dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African-Americans with type 2 diabetes[J]. J Clin Endocrinol Metab, 2013, 98(1): E60-E65. DOI:10.1210/jc.2012-3038.
[14]THAMBIAH S, ROPLEKAR R, MANGHAT P, et al. Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness[J]. Calcif Tissue Int, 2012, 90(6): 473-480. DOI:10.1007/s00223-012-9595-4.
[15]HALL J E, GRANGER J P, DO CARMO J M, et al. Hypertension: physiology and pathophysiology[J]. Compr Physiol, 2012, 2(4): 2393-2442. DOI:10.1002/cphy.c110058.
[16]JIANG J, DEAN, BURGHARDT R C, et al. Disruption of cadherin/catenin expression, localization, and interactions during HgCl2-induced nephrotoxicity[J]. Toxicol Sci, 2004, 80(1): 170-182. DOI:10.1093/toxsci/kfh143.
[17]WANG Y P, ZHOU C J, LIU Y H. Wnt signaling in kidney development and disease[J]. Prog Mol Biol Transl Sci, 2018, 153: 181-207. DOI:10.1016/bs.pmbts.2017.11.019.
[18]XIAO L X, XU B, ZHOU L L, et al. Wnt/β-catenin regulates blood pressure and kidney injury in rats[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1313-1322. DOI:10.1016/j.bbadis.2019.01.027.
[19]CONTRERAS R G, FLORES-MALDONADO C, LZARO A, et al. Ouabain binding to Na+, K+-ATPase relaxes cell attachment and sends a specific signal (NACos) to the nucleus[J]. J Membr Biol, 2004, 198(3): 147-158. DOI:10.1007/s00232-004-0670-2.
[20]CHEN K, ZHOU M D, WANG X M, et al. The role of myokines and adipokines in hypertension and hypertension-related complications[J]. Hypertens Res, 2019, 42(10): 1544-1551. DOI:10.1038/s41440-019-0266-y.
[21]SHAO S, CAI W W, SHENG J, et al. Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats[J]. Am J Transl Res, 2015, 7(8): 1345-1356.
[22]HATOU S, YOSHIDA S, HIGA K, et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/β-catenin signaling[J]. Stem Cells Dev, 2013, 22(5): 828-839. DOI:10.1089/scd.2012.0286.
[23]SOPJANI M, ALESUTAN I, WILMES J, et al. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin[J]. Biochem Biophys Res Commun, 2010, 402(3): 467-470. DOI:10.1016/j.bbrc.2010.10.049.
[24]MENG W X, TAKEICHI M. Adherens junction: molecular architecture and regulation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6): a002899. DOI:10.1101/cshperspect.a002899.
[25]陈悦. 多巴胺D1类受体与胃泌素受体相互作用对胃-肾促尿钠排泄轴的影响[D]. 重庆: 第三军医大学, 2014.
CHEN Y.Effects of dopamine D1 receptor and gasatrin receptor interaction on the excretion axis of stomach-kidney sodium gonadotropin[D]. Chongqing: Third Military Medical University, 2014. 

更新日期/Last Update: 2020-10-02