[1]翟铁,田雪品,郝凤杰,等.miR-186-5p负性调控CDCA3对高脂高糖诱导的胰岛β细胞具有保护作用[J].第三军医大学学报,2020,42(19):1930-1937.
 ZHAI Tie,TIAN Xuepin,HAO Fengjie,et al.MiR-186-5p negatively regulates CDCA3 to improve proliferation and inhibit apoptosis of islet β cells induced by high fat and high glucose[J].J Third Mil Med Univ,2020,42(19):1930-1937.
点击复制

miR-186-5p负性调控CDCA3对高脂高糖诱导的胰岛β细胞具有保护作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第19期
页码:
1930-1937
栏目:
基础医学
出版日期:
2020-10-15

文章信息/Info

Title:
MiR-186-5p negatively regulates CDCA3 to improve proliferation and inhibit apoptosis of islet β cells induced by high fat and high glucose
作者:
翟铁田雪品郝凤杰张艳秋王晓军
承德医学院第二临床学院,承德市中心医院内分泌科
Author(s):
ZHAI Tie TIAN Xuepin HAO Fengjie ZHANG Yanqiu WANG Xiaojun

Department of Endocrinology, Chengde Central Hospital, Second Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, 067000, China

关键词:
miR-186-5p细胞分裂周期相关因子3高脂高糖胰岛&beta细胞细胞增殖细胞凋亡
Keywords:
miR-186-5p cell division cycle associated 3 protein high lipid high glucose islet &beta cells cell proliferation apoptosis
分类号:
R322.57; R329.28; R589.1
文献标志码:
A
摘要:

目的探讨miR-186-5p通过细胞分裂周期相关因子3 (cell division cycle associated 3 protein,CDCA3) 调控高脂高糖诱导的胰岛β细胞增殖和凋亡的作用及机制。方法以胰岛β细胞NIT-1为对象,利用高脂高糖诱导损伤,CCK-8法检测细胞增殖,流式细胞术评估细胞凋亡,Western blot分析细胞核相关抗原Ki-67(Ki-67)、增殖细胞核抗原(PCNA)、B细胞淋巴瘤/白血病-2(Bcl-2)和Bcl-2相关X蛋白(Bax)蛋白表达,实时定量PCR(qRT-PCR)测定miR-186-5p、CDCA3 mRNA表达。生物信息学预测和双荧光素酶活性检测miR-186-5p与CDCA3的靶向关系。在NIT-1细胞中转染miR-186-5p或si-CDCA3,并进行高脂高糖处理,观察其对细胞增殖、凋亡的影响。结果高脂高糖明显降低NIT-1细胞的细胞活力,Ki-67、PCNA、Bcl-2蛋白表达,以及miR-186-5p表达,同时显著提高细胞的凋亡率和Bax蛋白表达,以及CDCA3 mRNA和蛋白表达(P<0.05)。miR-186-5p靶向负调控基因CDCA3。过表达miR-186-5p或敲减CDCA3明显增加高脂高糖损伤的NIT-1细胞的细胞活力及Ki-67、PCNA、Bcl-2蛋白表达,显著降低高脂高糖损伤的NIT-1细胞的凋亡率和Bax蛋白表达(P<0.05)。 结论miR-186-5p通过靶向负性调控CDCA3基因表达,促进高脂高糖诱导的胰岛β细胞的增殖,抑制细胞凋亡,从而保护高脂高糖诱导的胰岛β细胞损伤。

Abstract:

ObjectiveTo investigate whether miR-186-5p can regulate the proliferation and apoptosis of islet β-cells induced by high fat and high glucose through cell division cycle associated 3 protein (CDCA3). MethodsMouse pancreatic β-cell line NIT-1 was treated with high lipid and glucose to induce injury. CCK-8 assay and flow cytometry were employed to measure cell proliferation and apoptosis. The expression of Ki-67, PCNA, Bcl-2 and Bax at protein level was analyzed by Western blotting, while that of miR-186-5p and CDCA3 at mRNA level was determined by qRT-PCR. Bioinformatics and dual luciferase activity assay were used to predict and detect the targeting relationship between miR-186-5p and CDCA3. NIT-1 cells were transfected with miR-186-5p or si-CDCA3, and treated with high lipid and high glucose, and the effects on cell proliferation and apoptosis were observed. ResultsHigh lipid and high glucose significantly reduced the cell viability, protein levels of Ki-67, PCNA and Bcl-2, and mRNA level of miR-186-5p expression in NIT-1 cells, while significantly increased the cell apoptotic rate and Bax protein expression, as well as CDCA3 expression at mRNA and protein levels (P<0.05). MiR-186-5p negatively regulates CDCA3 as a target. Overexpression of miR-186-5p or knockdown of CDCA3 dramatically improved the cell viability, increased the expression of Ki-67, PCNA, and Bcl-2 at protein level, while remarkably decreased the apoptotic rate and Bax protein expression in NIT-1 cells after the treatment of high lipid and high glucose (P<0.05). ConclusionmiR-186-5p can negatively regulate the expression of CDCA3 gene, and thus promote the proliferation of islet β cells induced by high fat and high glucose and inhibit the apoptosis, so as to protect the islet β cells against the damage induced by high fat and high glucose.

参考文献/References:

[1]NG L C, GUPTA M. Transdermal drug delivery systems in diabetes management: a review[J]. Asian J Pharm Sci, 2020, 15(1): 13-25. DOI:10.1016/j.ajps.2019.04.006.
[2]YE R S, ONODERA T, SCHERER P E. Lipotoxicity and β cell maintenance in obesity and type 2 diabetes[J]. J. Endocr. Soc., 2019, 3(3): 617-631. DOI:10.1210/js.2018-00372.
[3]MARTINEZ-SANCHEZ A, NGUYEN-TU M S, CEBOLA I, et al. MiR-184 expression is regulated by AMPK in pancreatic islets[J]. FASEB J, 2018, 32(5): 2587-2600. DOI:10.1096/fj.201701100R.
[4]WU D H, LIANG H, LU S N, et al. miR-124 suppresses pancreatic ductal adenocarcinoma growth by regulating monocarboxylate transporter 1-mediated cancer lactate metabolism[J]. Cell Physiol Biochem, 2018, 50(3): 924-935. DOI:10.1159/000494477.
[5]MICHLEWSKI G, CCERES J F. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25(1): 1-16. DOI:10.1261/rna.068692.118.
[6]NIGI L, GRIECO G E, VENTRIGLIA G, et al. MicroRNAs as regulators of insulin signaling: research updates and potential therapeutic perspectives in type 2 diabetes[J]. Int J Mol Sci, 2018, 19(12): 3705. DOI:10.3390/ijms19123705.
[7]RAJAN S, PANZADE G, SRIVASTAVA A, et al. miR-876-3p regulates glucose homeostasis and insulin sensitivity by targeting adiponectin[J]. J Endocrinol, 2018, 239(1): 1-17. DOI:10.1530/JOE-17-0387.
[8]郭润民, 刘畅, 吴子君, 等. 糖尿病心肌病患者血清差异表达microRNA及作用的研究[J]. 中国医药科学, 2016, 6(13): 20-23.
GUO R M, LIU C, WU Z J, et al. Serum differentially expression microRNA profile and potential roles in diabetic cardiomyopathy patients[J]. China Med Pharm, 2016, 6(13): 20-23.
[9]胡朝恩. Exenatide对高糖高脂诱导的NIT-1细胞损伤和炎症因子过表达的影响[D]. 泸州:四川医科大学, 2015.
HU C E. Effects of Exenatide on high glucose and high fat induced NIT-1 cell damage and overexpression of inflammatory factors [D]. Luzhou:Sichuan Medical University, 2015.
[10]WANG W Y, WANG J, YAN M L, et al. MiRNA-92a protects pancreatic B-cell function by targeting KLF2 in diabetes mellitus[J]. Biochem Biophys Res Commun, 2018, 500(3): 577-582. DOI:10.1016/j.bbrc.2018.04.097.
[11]SHEN Z Y, JIANG H M, HSU H T, et al. MicroRNA-127 inhibits cell proliferation via targeting Kif3b in pancreatic β cells[J]. Aging, 2019, 11(5): 1342-1355. DOI:10.18632/aging.101835.
[12]张萌, 欧阳礼辰, 龙漫. 桑白皮含药血清抑制高脂高糖诱导的胰岛β细胞凋亡的分子机制[J]. 湖北中医药大学学报, 2018, 20(4): 15-17. DOI:10.3969/j.issn.1008-987x.2018.04.03. 
ZHANG M, OUYANG L C, LONG M. Molecular mechanism of cortex mori radicis serum inhibiting apoptosis of islet β cells induced by palmitic acid and high glucose[J]. J Hubei Univ Chin Med, 2018, 20(4): 15-17. DOI:10.3969/j.issn.1008-987x.2018.04.03.
[13]TAN H Y, ZHAO L. lncRNA nuclear-enriched abundant transcript 1 promotes cell proliferation and invasion by targeting miR-186-5p/HIF-1α in osteosarcoma[J]. J Cell Biochem, 2019, 120(4): 6502-6514. DOI:10.1002/jcb.27941. 
[14]LIU X, ZHOU X, CHEN Y, et al. miR-186-5p targeting SIX1 inhibits cisplatin resistance in non-small-cell lung cancer cells (NSCLCs)[J]. Neoplasma, 2020, 67(1): 147-157. DOI:10.4149/neo_2019_190511N420.
[15]OUYANG Y M, LI Y J, HUANG Y G, et al. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2[J]. J Cell Physiol, 2019, 234(7): 10458-10469. DOI:10.1002/jcp.27714.
[16]ZHANG Z Q, ZHANG W, MAO J S, et al. miR-186-5p functions as a tumor suppressor in human osteosarcoma by targeting FOXK1[J]. Cell Physiol Biochem, 2019, 52(3): 553-564. DOI:10.33594/000000039. 
[17]ZHU K, SU Y L, XU B, et al. MicroRNA-186-5p represses neuroblastoma cell growth via downregulation of Eg5[J]. Am J Transl Res, 2019, 11(4): 2245-2256.
[18]LIU Y, ZHENG W, PAN Y, et al. Low expression of miR-186-5p regulates cell apoptosis by targeting toll-like receptor 3 in high glucose-induced cardiomyocytes[J]. J Cell Biochem, 2019, 120(6): 9532-9538. DOI:10.1002/jcb.28229.
[19]JIANG J M, MO H L, LIU C, et al. Inhibition of miR-186-5p contributes to high glucose-induced injury in AC16 cardiomyocytes[J]. Exp Ther Med, 2018, 15(1): 627-632. DOI:10.3892/etm.2017.5445.
[20]ADAMS M N, BURGESS J T, HE Y W, et al. Expression of CDCA3 is a prognostic biomarker and potential therapeutic target in non-small cell lung cancer[J]. J Thorac Oncol, 2017, 12(7): 1071-1084. DOI:10.1016/j.jtho.2017.04.018.
[21]ZHANG Y, YIN W, CAO W, et al. CDCA3 is a potential prognostic marker that promotes cell proliferation in gastric cancer[J]. Oncol Rep, 2019, 41(4): 2471-2481. DOI:10.3892/or.2019.7008.
[22]ZHANG W, LU Y X, LI X M, et al. CDCA3 promotes cell proliferation by activating the NF-κB/cyclin D1 signaling pathway in colorectal cancer[J]. Biochem Biophys Res Commun, 2018, 500(2): 196-203. DOI:10.1016/j.bbrc.2018.04.034.

更新日期/Last Update: 2020-10-02