[1]薛钰奇,张华才,文大林,等.模拟实爆条件下新型聚脲类材料对肺冲击伤的防护效应研究[J].第三军医大学学报,2020,42(19):1875-1821.
 XUE Yuqi,ZHANG Huacai,WEN Dalin,et al.Bioprotective effects of novel polyurea materials on lung blast injury after simulated open-field explosion[J].J Third Mil Med Univ,2020,42(19):1875-1821.
点击复制

模拟实爆条件下新型聚脲类材料对肺冲击伤的防护效应研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第19期
页码:
1875-1821
栏目:
军事医学
出版日期:
2020-10-15

文章信息/Info

Title:
Bioprotective effects of novel polyurea materials on lung blast injury after simulated open-field explosion
作者:
薛钰奇 张华才 文大林 杜娟 张安强 杨策 蒋建新
陆军军医大学(第三军医大学)大坪医院野战外科研究所战伤救治前沿技术研究室,创伤、烧伤与复合伤国家重点实验室
Author(s):
XUE Yuqi ZHANG Huacai WEN Dalin DU Juan ZHANG Anqiang YANG Ce JIANG Jianxin

State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

关键词:
肺冲击伤超压峰值胸壁加速度聚脲创伤和损伤
Keywords:
blast lung injury peak pressure chest wall acceleration polyurea trauma and injury
分类号:
R642;R826.63;TS941.15
文献标志码:
A
摘要:

目的通过肺冲击伤防护效应及冲击波超压峰值衰减效能进行检测、验证,筛选防冲击波性能良好的新型聚脲类材料,为冲击波防护装备的研制提供理论基础和材料支撑。方法采用7 kg TNT炸药球,在旷场空爆条件下,观察距离爆心3.8 m和5.8 m处被覆不同组合防护材料的人体躯干模型的冲击波超压峰值变化。根据新型聚脲类材料(PUR)分子结构和组分(分子结构改造、微米级玻璃颗粒夹杂)不同,以及与现役使用的防弹材料超高分子量聚乙烯(PE)组合分为8组:PE、PUR1+PE、PUR1G20+PE、PUR1G30+PE、PUR2+PE、PUR2G20+PE、PUR2G30+PE、PUR3+PE;每组材料组合于两个距离各测试1次。同时选择衰减冲击波性能良好的聚脲类材料品种,制备山羊胸部防冲击波模具,进行生物防护效应实验。选取24只实验山羊随机分为无防护组、PE防护组、优选聚脲(PUR)防护组和优选聚脲+PE防护组。根据7 kg TNT空爆冲击波超压估值,选择具有较强冲击波杀伤范围的距离爆心3.6、3.8 m处观察穿戴优选聚脲模具山羊在上述模拟实爆条件下,胸壁加速度、生命体征、肺脏伤情及其等级变化。结果在距离爆心3.8 m和5.8 m处,新型聚脲组对冲击波衰减效能较PE组分别增加23%~35%和25%~50%。在距离爆心3.6 m和3.8 m处,优选聚脲+PE防护组动物胸壁加速度较无防护组分别降低55.56%和65.20%,肺脏伤情较PE防护组显著减轻,伤情等级减轻2级。结论  新型聚脲材料通过衰减冲击波对肺冲击伤有高效防护效能。

Abstract:

ObjectiveTo detect, verify and screen novel polyurea (PUR) materials with better protective efficacy against blast wave by testing their bioprotective effects and peak pressure of shock waves so as to provide theoretical and material support for preparation of protective equipment against blast wave. MethodsA 7 kg TNT explosive ball in a open field was exploded, and the changes in the peak pressure of shock waves to a human torso model were observed, which was covered with a series of PUR materials and located at 3.8 and 5.8 m from the explosion center respectively. According to the molecular structure and compositions (molecular structure modification, and volume fractions of micron glass particles), and combination with ultra high molecular weight polyethylene (PE, bulletproof material used in active service) or not, the first part of experiment was divided into PE, PUR1+PE, PUR1G20+PE, PUR1G30+PE, PUR2+PE, PUR2G20+PE, PUR2G30+PE, and PUR3+PE groups. Each type of material was tested once at 3.6 and 5.8 m respectively. Based on the results of above experiment, the selected PUR material with good blast mitigation was chosen and then used to prepare a goat chest mold to detect its anti-blast effect. Then 24 goats were randomly divided into the unprotected, PE, PUR, and PUR+PE groups. They were placed in a open field at the distance of 3.6 and 3.8 m from the explosion center (7 kg TNT air explosion). The chest wall acceleration, vital signs, and severity of lung injury were observed and compared among the groups.  ResultsAt 3.8 and 5.8 m from the explosion center, the attenuation effects of new PUR groups on shock waves were increased by 23%~35% and 25%~50%, respectively, when compared with the PE group. At the distance of 3.6 and 3.8 m, the chest wall acceleration was preferably lower by 55.56% and 65.20% in the PUR+PE group than the unprotected group, respectively. The lung injury was significantly alleviated compared with the PE group, and the injury was reduced by 2 levels. ConclusionThe new PUR material has ideal protective effects against pulmonary blast injury by attenuating shock waves.

参考文献/References:

[1]WOLF S J, BEBARTA V S, BONNETT C J , et al. Blast Injuries[J]. Lancet,2009; 374(9687):405-415.
[2]杨策, 蒋建新, 王正国, 等. 肺冲击伤转化研究: 历史、现状与挑战[J]. 实用医药杂志, 2019, 36(1): 1-5, 8. 
YANG C, JIANG J X, WANG Z G. Transformation research of pulmonary blast injury: history, current situation and challenges[J]. Pract J Med Pharm, 2019, 36(1): 1-5, 8.
[3]SCOTT T E, KIRKMAN E, HAQUE M, et al. Primary blast lung injury—a review[J]. Br J Anaesth, 2017, 118(3): 311-316. DOI:10.1093/bja/aew385.
[4]尹德军, 郑坚, 熊超, 等. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展[J]. 材料导报 2018; 32(05):815-821,827.
YIN D J, ZHENG J, XIONG C, et al. Research progress on composite materials and structures used for protection against damage effect of projectile explosion[J]. Mater Rep 2018; 32(05):815-821,827.
[5]许帅. 聚脲弹性体复合结构抗冲击防护性能研究[D]. 北京: 北京理工大学, 2015.
XU S. The impact resistance study of polyurea composite structures[D]. Beijing: Beijing Institute of Technology, 2015.
[6]宋彬. 聚脲弹性体夹层防爆罐抗爆性能研究[D]. 南京: 南京理工大学, 2016.
SONG B. Research on anti-explosion performance of polyurea elastomer sandwich explosion-proof tank[D]. Nanjing: Nanjing University of Science and Technology, 2016.
[7]黄阳洋, 王志军, 赵鹏铎, 等. 聚脲涂层复合结构防护性能研究现状[J]. 兵器装备工程学报, 2018, 39(4):57-60.
HUANG Y Y, WANG Z J, ZHAO P D, et al. Research status of protective properties of po1yurea coating composite structures[J]. J Ordnan Equipm Engineer, 2018, 39(4):57-60.
[8]SINGLETON J A, GIBB I E, BULL A M, et al. Primary blast lung injury prevalence and fatal injuries from explosions: insights from postmortem computed tomographic analysis of 121 improvised explosive device fatalities[J]. J Trauma Acute Care Surg, 2013, 75(2 Suppl 2): S269-S274. DOI:10.1097/TA.0b013e318299d93e.
[9]AVIDAN V, HERSCH M, ARMON Y, et al. Blast lung injury: clinical manifestations, treatment, and outcome[J]. Am J Surg, 2005, 190(6): 927-931. DOI:10.1016/j.amjsurg.2005.08.022.
[10]LATOURRETTE T. The life-saving effectiveness of body armor for police officers[J]. J Occup Environ Hyg, 2010, 7(10): 557-562. DOI:10.1080/15459624.2010.489798.
[11]马晓荣. 漫话“防弹衣”(一)[J]. 中国军转民, 2019; (2):52-58.
MA X R. Random talk on “Bulletproof Shirt” (1)[J]. Defence Industry Convers China, 2019; (2):52-58.
[12]戴平仁, 黄正祥, 祖旭东, 等. 聚脲弹性体“三明治”夹层结构抗爆性能[J]. 工程塑料应用, 2017, 45(12): 70-74.
DAI P R, HUANG Z X, ZU X D, et al. Anti-detonation property of sandwich structure with polyurea elastomer[J]. Eng Plast Appl, 2017, 45(12): 70-74.
[13]王小伟, 何金迎, 祖旭东, 等. 聚脲弹性体复合夹层结构的防爆性能[J]. 工程塑料应用, 2017; 45(5):63-68.
WANG X W, HE J Y, ZU X D, et al. Antidetonation properties on composite sandwich structure with polyurea elastomer[J]. Eng Plast Appl, 2017; 45(5):63-68.
[14]DUDA M, PACH J, LESIUK G. Influence of polyurea composite coating on selected mechanical properties of AISI 304 steel[J]. Materials (Basel), 2019, 12(19): E3137. DOI:10.3390/ma12193137.
[15]张均奎, 王正国, 冷华光,等. 冲击波负压作用下家兔胸部动力学响应的观察[J]. 生物医学工程学杂志, 1994, 11(1): 14-18. 
ZHANG J K, WANG Z G, LENG H G, et al. Observation on the dynamic responses of the Thorax of rabbits to the underpressure[J]. J Biomed Eng, 1994, 11(1): 14-18.
[16]张均奎, 王正国, 孙立英, 等. 激波载荷下绵羊胸部动力学响应的数学模型[J]. 生物医学工程学杂志, 1990, (1):13-17.
ZHANG J K, WANG Z G, SUN L Y, et al. A mathematieal model used to prediet the dynamic responses of the chest wall in sheep to blast waves[J]. J Biomedical Eng, 1990, (1):13-17.
[17]赵敏, 王正国. 原发性肺冲击伤生物力学研究概述(一)[J]. 爆炸与冲击, 1994, 14(1): 89-96. 
ZHAO M, WANG Z G. Biomechanics of the primary lung blast injury(Ⅰ)[J]. Explos Shock Waves, 1994, 14(1): 89-96.
[18]陶然. 各国警用防弹衣的质量和应用研究[J]. 中国个体防护装备, 2009(6): 11-14, 23. 
TAO R. The quality and application study of police body armor in countries around the world[J]. China Pers Prot Equip, 2009(6): 11-14, 23.
[19]张波. 步枪弹致背部复合防弹衣后脊柱脊髓钝性损伤特点及损伤机理研究[D]. 重庆: 第三军医大学, 2012.
ZHANG B. Characteristics and mechanism of blunt trauma after the armored spine injured by rifle bullets[D]. Chongqing: Third Military Medical University, 2012.

相似文献/References:

[1]何庆加,阎永堂,林远,等.中度以上冲击伤狗的早期临床观察[J].第三军医大学学报,1986,08(02):0.[doi:10.16016/j.1000-5404.1986.02.012 ]
 He Qingjia.[J].J Third Mil Med Univ,1986,08(19):0.[doi:10.16016/j.1000-5404.1986.02.012 ]

更新日期/Last Update: 2020-10-02