[1]王显文,唐浩程,韩日,等.鼻咽癌类器官疾病模型的建立与药敏初步试验[J].第三军医大学学报,2020,42(14):1371-1379.
 WANG Xianwen,TANG Haocheng,HAN Ri,et al.Establishment of an organoid model of nasopharyngeal carcinoma and its in vitro chemosensitivity profile[J].J Third Mil Med Univ,2020,42(14):1371-1379.
点击复制

鼻咽癌类器官疾病模型的建立与药敏初步试验(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第14期
页码:
1371-1379
栏目:
基础医学
出版日期:
2020-07-30

文章信息/Info

Title:
Establishment of an organoid model of nasopharyngeal carcinoma and its in vitro chemosensitivity profile
作者:
王显文唐浩程韩日赵云腾汪珂陈泽新徐丛李刚
南方医科大学南方医院耳鼻咽喉头颈外科;广州创芯国际生物研究院
Author(s):
WANG Xianwen TANG Haocheng HAN Ri ZHAO Yunteng WANG Ke CHEN Zexin XU Cong LI Gang

WANG Xianwen1, TANG Haocheng1, HAN Ri1, ZHAO Yunteng1, WANG Ke1, CHEN Zexin2, XU Cong2, LI Gang

关键词:
鼻咽癌3D立体培养类器官肿瘤干细胞药敏试验
Keywords:
carcinoma three-dimensional culture organoids tumor stem cells drug sensitivity test
分类号:
R73-354; R739.63; R915
文献标志码:
A
摘要:

目的探索构建鼻咽癌类器官的体外培养方法,利用类器官模型进行个性化药物敏感性的初步检测。方法鼻咽镜活检或者鼻内镜手术获取鼻咽癌患者肿瘤组织,剪切、消化、过滤后获取鼻咽癌细胞,用基质胶重悬鼻咽癌细胞并接种于培养皿,3D立体培养类器官;提取鼻咽癌类器官制成石蜡切片,进行形态学,Ki67、CD133免疫组化,CD44免疫荧光和EBER原位杂交鉴定,并与亲本肿瘤组织对比;鼻咽癌类器官培养5 d后,加入紫杉醇、顺铂、卡铂、吉西他滨和长春瑞滨处理,用中性红染色法测定细胞活力,分析药敏结果。结果鼻咽癌类器官核异型性明显,与亲本鼻咽癌组织一致。鼻咽癌类器官CD133免疫组化和CD44免疫荧光强阳性,提示鼻咽癌类器官是肿瘤干细胞的富集,Ki67细胞比例约占30%,类器官具备一定增殖能力。化疗药物作用后,鼻咽癌类器官对卡铂、顺铂、长春瑞滨高度敏感,吉西他滨中度敏感,替吉奥低度敏感。结论成功建立了鼻咽癌类器官体外培养体系,可初步用于体外药敏试验。

Abstract:

ObjectiveTo explore the method for in vitro culture of an organoid model of nasopharyngeal carcinoma (NPC) and examine its in vitro chemosensitivity profile. MethodsFresh specimens of NPC tissues were obtained from clinical patients during nasopharyngoscopic biopsy or nasal endoscopic surgeries. The tumor tissues were cut into pieces, digested with mixed digestive juice and filtered. The NPC cells were isolated by centrifugation, resuspended with Matrix gel and AMDM/F12, and inoculated in a Petri dish for three-dimensional culture of the organoids. Paraffin sections of the NPC organoids cultured for 5 to 7 d were prepared for morphological examination and immunohistochemistry for Ki67 and CD133, CD44 immunofluorescence assay, and EBER in situ hybridization. The NPC organoids cultured for 5 d were tested for chemosensitivity to paclitaxel, cisplatin, carboplatin, gemcitabine and vinorelbine by assessing the cell viability with neutral red staining following treatments with the drugs. ResultsThe cultured NPC organoids showed obvious nuclear atypia, which was consistent with that of the source NPC tissues. The NPC organoids were strongly positive for CD133 and CD44, suggesting the enrichment of tumor stem cells in the organoids. Nearly 30% of the cells in the organoids were positive for Ki67, indicating the proliferative capacity of the organoids. Chemosensitivity tests showed that the NPC organoids were highly sensitive to carboplatin, cisplatin and vinorelbine, and moderately sensitive to gemcitabine, but with a low sensitivity to tigio. ConclusionWe successfully established an in vitro culture system of NPC organoids, which can serve as a new NPC model for testing drug sensitivities.

参考文献/References:

[1]ZHOU X Y, ZHAO W L, CHEN Y F, et al. Patient-derived tumor models for human nasopharyngeal carcinoma[J]. Enzymes, 2019, 46: 81-96. DOI: 10.1016/bs.enz.2019.08.007.

[2]SUN X M, SU S F, CHEN C Y, et al. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities[J]. Radiother Oncol, 2014, 110(3): 398-403. DOI: 10.1016/j.radonc.2013.10.020.

[3]CHUNG A K, OUYANG C N, LIU H, et al. Targeted sequencing of cancer-related genes in nasopharyngeal carcinoma identifies mutations in the TGF-β pathway[J]. Cancer Med, 2019, 8(11): 5116-5127. DOI: 10.1002/cam4.2429.

[4]TIRINO V, DESIDERIO V, PAINO F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization[J]. FASEB J, 2013, 27(1): 13-24. DOI: 10.1096/fj.12-218222.

[5]BAO S D, WU Q L, MCLENDON R E, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response[J]. Nature, 2006, 444(7120): 756-760. DOI: 10.1038/nature05236.

[6]EYLER C E, RICH J N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis[J]. J Clin Oncol, 2008, 26(17): 2839-2845. DOI: 10.1200/JCO.2007.15.1829.

[7]XIE P, YANG J P, CAO Y, et al. Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target[J]. Cell Death Dis, 2017, 8(6): e2834. DOI: 10.1038/cddis.2017.195.

[8]COCOLA C, MOLGORA S, PISCITELLI E, et al. FGF2 and EGF are required for self-renewal and organoid formation of canine normal and tumor breast stem cells[J]. J Cell Biochem, 2017, 118(3): 570-584. DOI: 10.1002/jcb.25737.

[9]SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium[J]. Gastroenterology, 2011, 141(5): 1762-1772. DOI: 10.1053/j.gastro.2011.07.050.

[10]HOUR F Q, MOGHADAM A J, SHAKERI-ZADEH A, et al. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models[J]. J Control Release, 2020, 321: 430-441. DOI: 10.1016/j.jconrel.2020.02.035.

[11]HORBACH S P J M, HALFFMAN W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature[J]. PLoS ONE, 2017, 12(10): e0186281. DOI: 10.1371/journal.pone.0186281.

[12]CHAN S Y, CHOY K W, TSAO S W, et al. Authentication of nasopharyngeal carcinoma tumor lines[J]. Int J Cancer, 2008, 122(9): 2169-2171. DOI: 10.1002/ijc.23374.

[13]STRONG M J, BADDOO M, NANBO A, et al. Comprehensive high-throughput RNA sequencing analysis reveals contamination of multiple nasopharyngeal carcinoma cell lines with HeLa cell genomes[J]. J Virol, 2014, 88(18): 10696-10704. DOI: 10.1128/JVI.01457-14.

[14]SHEN Y, SCHMIDT B U S, KUBITSCHKE H, et al. Detecting heterogeneity in and between breast cancer cell lines[J]. Cancer Converg, 2020, 4(1): 1. DOI: 10.1186/s41236-020-0010-1.

[15]GAO D, CHEN Y. Organoid development in cancer genome discovery[J]. Curr Opin Genet Dev, 2015, 30: 42-48. DOI: 10.1016/j.gde.2015.02.007.

[16]范圣先, 尹健一, 王剑, 等. 结肠类器官的构建与应用研究进展[J]. 中华胃肠外科杂志, 2019, 22(11): 1095-1100. DOI: 10.3760/cma.j.issn.1671-0274.2019.11.017.

FAN S X, YIN J Y, WANG J, et al. New frontiers in the establishment and application of colonic organoids[J]. Chin J Gastrointest Surg, 2019, 22(11): 1095-1100. DOI: 10.3760/cma.j.issn.1671-0274.2019.11.017.

[17]FOWLER J L, ANG L T, LOH K M. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids[J]. WIREs Dev Biol, 2020, 9: e368. DOI:10.1002/wdev.368.

[18]HAUSSER J, ALON U. Tumour heterogeneity and the evolutionary trade-offs of cancer[J]. Nat Rev Cancer, 2020, 20(4): 247-257. DOI: 10.1038/s41568-020-0241-6.

[19]WIECHMANN S, MAISONNEUVE P, GREBBIN B M, et al. Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids[J]. J Biol Chem, 2020, 295(14): 4526-4540. DOI: 10.1074/jbc.RA119.011025.

[20]VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926. DOI: 10.1126/science.aao2774.

[21]BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12): 1424-1435. DOI: 10.1038/nm.4438.

[22]GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. DOI: 10.1016/j.cell.2014.08.016.

[23]LEE S H, HU W H, MATULAY J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17. DOI: 10.1016/j.cell.2018.03.017.

[24]KIM M, MUN H, SUNG C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nat Commun, 2019, 10(1): 3991. DOI: 10.1038/s41467-019-11867-6.

[25]BORETTO M, MAENHOUDT N, LUO X L, et al. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening[J]. Nat Cell Biol, 2019, 21(8): 1041-1051. DOI: 10.1038/s41556-019-0360-z.

[26]VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378): 920-926. DOI: 10.1126/science.aao2774.

[27]TIRINO V, DESIDERIO V, PAINO F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization[J]. FASEB J, 2013, 27(1): 13-24. DOI: 10.1096/fj.12-218222.

[28]MANNELLI G, GALLO O. Cancer stem cells hypothesis and stem cells in head and neck cancers[J]. Cancer Treat Rev, 2012, 38(5): 515-539. DOI: 10.1016/j.ctrv.2011.11.007.

[29]DAHLROT R H. The prognostic value of clinical factors and cancer stem cell-related markers in gliomas[J]. Dan Med J, 2014, 61(10): B4944.

[30]ZHUANG H W, MO T T, HOU W J, et al. Biological charac-teristics of CD133(+) cells in nasopharyngeal carcinoma[J]. Oncol Rep, 2013, 30(1): 57-63. DOI:10.3892/or.2013.2408.

[31]JIANG Q P, ZHANG Q B, WANG S, et al. A fraction of CD133+ CNE2 cells is made of giant cancer cells with morphological evidence of asymmetric mitosis[J]. J Cancer, 2015, 6(12): 1236-1244. DOI: 10.7150/jca.12626.

[32]YANG C F, YANG G D, HUANG T J, et al. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop[J]. Oncogene, 2016, 35(26): 3419-3431. DOI: 10.1038/onc.2015.402.

更新日期/Last Update: 2020-07-23