[1]张晓青,杨小林.肢端肥大症患者脑灰质厚度改变的磁共振成像研究[J].第三军医大学学报,2020,42(14):1428-1433.
 ZHANG Xiaoqing,YANG Xiaolin.Alteration of cerebral gray matter thickness in acromegaly: a magnetic resonance imaging study[J].J Third Mil Med Univ,2020,42(14):1428-1433.
点击复制

肢端肥大症患者脑灰质厚度改变的磁共振成像研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第14期
页码:
1428-1433
栏目:
神经科学
出版日期:
2020-07-30

文章信息/Info

Title:
Alteration of cerebral gray matter thickness in acromegaly: a magnetic resonance imaging study
作者:
张晓青杨小林
陆军军医大学(第三军医大学)第二附属医院神经外科
Author(s):
ZHANG Xiaoqing YANG Xiaolin

Department of Neurosurgery, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
肢端肥大症抑郁症灰质厚度生长激素胰岛素样生长因子磁共振成像
Keywords:
acromegaly depression cortical thickness growth hormone insulinlike growth factor1 magnetic resonance imaging
分类号:
R445.2; R584.11; R749.24
文献标志码:
A
摘要:

目的应用基于脑表面分析(surface based analysis, SRA)的方法研究肢端肥大症患者磁共振脑结构图像,分析肢端肥大症患者各脑区灰质厚度的改变以及与临床资料的相关性。方法收集2015年1月27日至2019年6月30日我科30名肢端肥大症患者和30名健康成年人磁共振三维容积扰相梯度回波(three dimensions T1 spoiled gradient recalled, 3D T1SPGR)薄层扫描图像,运用Freesurfer软件进行分析,得出所有大脑灰质厚度数据,并进行对比分析,得到差异脑区,分析其与临床资料的相关性。结果与健康对照相比,肢端肥大症患者右侧额中回下部、右侧额中回上部、右侧中央前回、右侧缘上回、右侧楔前叶、右侧海马旁回、右侧梭状回和左侧内嗅皮层灰质厚度变薄,且右侧楔前叶和右侧海马旁回灰质厚度与汉密尔顿抑郁量表(Hamilton Depression Scale, HAMD)评分呈负相关,与血浆高水平生长激素(growth hormone, GH)和胰岛素样生长因子1(insulinlike growth factor1, IGF1)水平呈负相关,灰质厚度变化与年龄无相关性。结论肢端肥大症患者存在多个脑区灰质厚度的变薄,可能是高水平的GH和IGF1激素作用所致,其中右侧楔前叶和右侧海马旁回灰质厚度变薄与肢端肥大症患者抑郁症有关。

Abstract:

ObjectiveTo study the changes of cortical thickness in different brain regions in patients with acromegaly using surfacebased analysis (SRA) and analyze the association of these changes with clinical findings of the patients. MethodsThirty patients with acromegaly and 30 healthy adults underwent magnetic resonance imaging (MRI) examination using a T1weighted threedimensional spoiled gradient recalled (3D SPGR) sequence. The MRI images were analyzed using Freesurfer software to determine the changes of cortical thickness in different brain regions of the patients relative to those in the healthy subjects, and the correlation of these changes with the clinical findings of the patients were analyzed. ResultsCompared with the healthy subjects, acromegalic patients had decreased cortical thickness in the right rostral middle frontal gyrus, the right caudal middle frontal gyrus, the right precentral gyrus, the right supramarginal gyrus, the right precuneus, the right parahippocampal gyrus, the right fusiform gyrus and the left olfactory cortex thickness. The cortical thickness in the right precuneus and the right parahippocampal gyrus were inversely correlated with Hamilton Depression Scale  (HAMD) scores and levels of growth hormone (GH) and insulinlike growth factor 1 (IGF1) but were not correlated with age of the patients. ConclusionThe patients with acromegaly have decreased cortical thickness in multiple brain regions, possibly as a result of high levels of GH and IGF1. The decreased cortical thickness in the right precuneus and the right parahippocampal gyrus is correlated with depression in acromegalic patients.

参考文献/References:

[1]ALSUMALI A, COTE D J, REGESTEIN Q R, et al. The impact of transsphenoidal surgery on neurocognitive function: a systematic review[J]. J Clin Neurosci, 2017, 42: 1-6. DOI: 10.1016/j.jocn.2017.01.015.

[2]SIEVERS C, DIMOPOULOU C, PFISTER H, et al. Prevalence of mental disorders in acromegaly: a crosssectional study in 81 acromegalic patients[J]. Clin Endocrinol (Oxf), 2009, 71(5): 691-701. DOI: 10.1111/j.13652265.2009.03555.x.

[3]PERTICHETTI M, SERIOLI S, BELOTTI F, et al. Pituitary adenomas and neuropsychological status: a systematic literature review[J]. Neurosurg Rev, 2019. DOI: 10.1007/s1014301901134z.

[4]SCHMAAL L, HIBAR D P, SMANN P G, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the Enigma Major Depressive Disorder Working Group[J]. Mol Psychiatry, 2017, 22(6): 900-909. DOI: 10.1038/mp.2016.60.

[5]FISCHL B, SALAT D H, BUSA E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain[J]. Neuron, 2002, 33(3): 341-355. DOI: 10.1016/s08966273(02)00569x.

[6]FISCHL B, DALE A M. Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proc Natl Acad Sci USA, 2000, 97(20): 11050-11055. DOI: 10.1073/pnas.200033797.

[7]SIEVERS C, SMANN P G, DOSE T, et al. Macroscopic brain architecture changes and white matter pathology in acromegaly: a clinicoradiological study[J]. Pituitary, 2009, 12(3): 177-185. DOI: 10.1007/s1110200801431.

[8]JAWORSKA N, MACMASTER F P, GAXIOLA I, et al. A preliminary study of the influence of age of onset and childhood trauma on cortical thickness in major depressive disorder[J]. Biomed Res Int, 2014, 2014: 410472. DOI: 10.1155/2014/410472.

[9]TRUONG W, MINUZZI L, SOARES C N, et al. Changes in cortical thickness across the lifespan in major depressive disorder[J]. Psychiatry Res, 2013, 214(3): 204-211. DOI: 10.1016/j.pscychresns.2013.09.003.

[10]PAPMEYER M, GILES S, SUSSMANN J E, et al. Cortical thickness in individuals at high familial risk of mood disorders as they develop major depressive disorder[J]. Biol Psychiatry, 2015, 78(1): 58-66. DOI: 10.1016/j.biopsych.2014.10.018.

[11]BARTLETT E A, KLEIN D N, LI K Q, et al. Depression severity over 27 months in adolescent girls is predicted by stresslinked cortical morphology[J]. Biol Psychiatry, 2019, 86(10): 769-778. DOI: 10.1016/j.biopsych.2019.04.027.

[12]KOPCZAK A, STALLA G K, UHR M, et al. IGFI in major depression and antidepressant treatment response[J]. Eur Neuropsychopharmacol, 2015, 25(6): 864-872. DOI: 10.1016/j.euroneuro.2014.12.013.

[13]BOT M, MILANESCHI Y, PENNINX B W, et al. Plasma insulinlike growth factor I levels are higher in depressive and anxiety disorders, but lower in antidepressant medication users[J]. Psychoneuroendocrinology, 2016, 68: 148-155. DOI: 10.1016/j.psyneuen.2016.02.028.

[14]FRANZ B, BUYSSE D J, CHERRY C R, et al. Insulinlike growth factor 1 and growth hormone binding protein in depression: a preliminary communication[J]. J Psychiatr Res, 1999, 33(2): 121-127. DOI: 10.1016/s00223956(98)000661.

[15]GERAEDTS V J, DIMOPOULOU C, AUER M, et al. Health outcomes in acromegaly: depression and anxiety are promising targets for improving reduced quality of life[J]. Front Endocrinol (Lausanne), 2014, 5: 229. DOI: 10.3389/fendo.2014.00229.

[16]BARCEL P, NICOLAU C, GAMUNDI' A, et al. Comparing the behavioural effects of exogenous growth hormone and melatonin in young and old wistar rats[J]. Oxid Med Cell Longev, 2016, 2016: 5863402. DOI: 10.1155/2016/5863402.

[17]ASHPOLE N M, SANDERS J E, HODGES E L, et al. Growth hormone, insulinlike growth factor1 and the aging brain[J]. Exp Gerontol, 2015, 68: 76-81. DOI: 10.1016/j.exger.2014.10.002.

[18]ROSN T, WIRN L, WILHELMSEN L, et al. Decreased psychological wellbeing in adult patients with growth hormone deficiency[J]. Clin Endocrinol (Oxf), 1994, 40(1): 111-116. DOI: 10.1111/j.13652265.1994.tb02452.x.

相似文献/References:

[1]黎雪梅,况利.抗抑郁药物促进抑郁模型大鼠行为和海马血管内皮细胞生长因子的表达[J].第三军医大学学报,2009,31(05):430.
 LI Xue-mei,KUANG Li.Effect of antidepressant on behavior and vascular endothelial cell growth factor in hippocampus of rat model of depression[J].J Third Mil Med Univ,2009,31(14):430.
[2]罗维,瞿广素.护理心理干预对慢性心力衰竭合并抑郁症患者心功能及生活质量的影响[J].第三军医大学学报,2012,34(18):1918.
[3]李大奇,况利,王敏建.不同电休克方法对抑郁模型大鼠海马干扰素-γ受体表达的影响[J].第三军医大学学报,2007,29(15):1494.
 LI Da-qi,KUANG Li,WANG Min-jian.Effects of electroshock on interferon gamma receptor expression in hippocampus of depressed rats[J].J Third Mil Med Univ,2007,29(14):1494.
[4]牟君,谢鹏.海马神经发生障碍——抑郁症发病机制的新观念[J].第三军医大学学报,2006,28(11):1264.
[5]戴若以,顾小红,张云东,等.阻断促肾上腺皮质激素释放激素1受体对慢性束缚应激致大鼠类抑郁症状的改善[J].第三军医大学学报,2015,37(22):2273.
 Dai Ruoyi,Gu Xiaohong,Zhang Yundong,et al.Blocking corticotropin-releasing hormone 1 receptor regulates expression of BDNF and GAP-43 in hypothalamus of depression rats induced by chronic restraint stress[J].J Third Mil Med Univ,2015,37(14):2273.
[6]曾妍,艾明,陈建梅,等.焦虑抑郁障碍共病患者的特质焦虑与其血清BDNF水平的相关性研究[J].第三军医大学学报,2011,33(18):1967.
 Zeng Yan,Ai Ming,Chen Jianmei,et al.Correlation between trait anxiety and serum brain-derived neurotrophic factor level in patients with combined anxiety and depression[J].J Third Mil Med Univ,2011,33(14):1967.
[7]赵晓晶,冯正直,王新,等.具体性自传体记忆任务下抑郁症患者的功能磁共振成像特点[J].第三军医大学学报,2010,32(19):2121.
 Zhao Xiaojing,Feng Zhengzhi,Wang Xin,et al.Characteristics of functional magnetic resonance image in activated brain areas under specific autobiographical memory in patients with depression[J].J Third Mil Med Univ,2010,32(14):2121.
[8]周俊英,陶媛,李力,等.伴有抑郁症状孕妇睡眠质量分析[J].第三军医大学学报,2010,32(05):471.
 Zhou Junying,Tao Yuan,Li Li,et al.Analysis of sleep quality in pregnant women with depression[J].J Third Mil Med Univ,2010,32(14):471.
[9]吴胜,张代江.米氮平与帕罗西汀治疗伴躯体症状抑郁症的对照分析[J].第三军医大学学报,2009,31(22):2290.
[10]王晓霞,蒋成刚,冯正直.抑郁症患者局部脑功能静息态磁共振成像研究[J].第三军医大学学报,2011,33(10):1052.
 Wang Xiaoxia,Jiang Chenggang,Feng Zhengzhi.Regional brain functional connectivity of depressed patients with restingstate functional magnetic resonance imaging[J].J Third Mil Med Univ,2011,33(14):1052.

更新日期/Last Update: 2020-07-23