[1]邹全明,李海波,曾浩.新型冠状病毒肺炎治疗药物的研究现状及对策建议[J].第三军医大学学报,2020,42(09):861-866.
 ZOU Quanming,LI Haibo,ZENG Hao.Current status and countermeasures for development of drugs to treat coronavirus disease 2019[J].J Third Mil Med Univ,2020,42(09):861-866.
点击复制

新型冠状病毒肺炎治疗药物的研究现状及对策建议(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第09期
页码:
861-866
栏目:
特别报道
出版日期:
2020-05-15

文章信息/Info

Title:
Current status and countermeasures for development of drugs to treat coronavirus disease 2019
作者:
邹全明李海波曾浩
陆军军医大学(第三军医大学)药学与检验医学系微生物与生化药学教研室,国家免疫生物制品工程技术研究中心
Author(s):
ZOU Quanming LI Haibo ZENG Hao

Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
新型冠状病毒新冠病毒肺炎治疗药物药物研发
Keywords:
severe acute respiratory syndrome coronavirus 2 coronavirus disease 2019 therapeutic drug drug development
分类号:
R563.106; R978.7
文献标志码:
A
摘要:

自新型冠状病毒(SARS-CoV-2)疫情发生以来,国内外多家研究机构投入到抗新型冠状病毒肺炎(简称新冠肺炎,coronavirus disease 2019, COVID-19)的药物研发中。目前主要采取老药新用的策略,筛选抗新冠病毒和抑制过度免疫反应的候选药物,相关研究已经取得了重要进展。本文在综述已经纳入国家卫健委印发的新型冠状病毒肺炎诊疗方案中以及在体外已经证实对新型冠状病毒具有抑制作用的药物研发和临床应用的现状的基础上,对未来新冠肺炎治疗药物的研究对策提出建议:①从“老药新用”策略向创新药物研发转变;②构建可靠的体内外药物筛选模型;③建立新冠肺炎药物研发的协同创新机制;④有序开展新冠肺炎的药物临床试验;⑤建立冠状病毒研发的长效机制。

Abstract:

Since the outbreak of the epidemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or 2019 novel coronavirus (2019-nCoV) provisionally, many research institutions at home and abroad have involved in the research and development (R&D) of drugs against coronavirus disease 2019 (COVID-19). At present, the strategy of new use of old drugs is used to screen candidate drugs which inhibit the virus or excessive immune response, and the related researches have made important progress. This article reviewed current status of development and clinical application of those drugs which have been included in the diagnosis of novel coronavirus-infected pneumonia and treatment protocols which have been shown to inhibit the virus in vitro. In addition, we have following suggestions for future researches on the development of novel drugs against COVID-19: ① from “new use of old drugs” strategy to innovative drug R&D; ② building reliable models for screening drugs in vitro and in vivo; ③establishing a synergistic innovation mechanism for drug R&D against COVID-19; ④conducting clinical trials of the drugs in order; ⑤ establishing a long-term mechanism for drug R&D against COVID-19.

参考文献/References:

[1]HUGHES J P, REES S, KALINDJIAN S B, et al. Principles of early drug discovery[J]. Br J Pharmacol, 2011, 162(6): 1239-1249. DOI: 10.1111/j.1476-5381.2010.01127.x.
[2]ZUMLA A, CHAN J F, AZHAR E I, et al. Coronaviruses-drug discovery and therapeutic options[J]. Nat Rev Drug Discov, 2016, 15(5): 327-347. DOI: 10.1038/nrd.2015.37.
[3]SACHS R E, GINSBURG P B, GOLDMAN D P. Encouraging new uses for old drugs[J]. JAMA, 2017, 318(24): 2421-2422. DOI: 10.1001/jama.2017.17535.
[4]VAN DE WATERBEEMD H, GIFFORD E. ADMET in silico modelling: towards prediction paradise?[J]. Nat Rev Drug Discov, 2003, 2(3): 192-204. DOI:10.1038/nrd1032.
[5]FERREIRA L L G, ANDRICOPULO A D. ADMET modeling approaches in drug discovery[J]. Drug Discov Today, 2019, 24(5): 1157-1165. DOI: 10.1016/j.drudis.2019.03.015.
[6]PANTZIARKA P, PIRMOHAMED M, MIRZA N. New uses for old drugs[J]. BMJ, 2018, 361: k2701. DOI: 10.1136/bmj.k2701.
[7]RICHARDSON P, GRIFFIN I, TUCKER C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease[J]. Lancet, 2020, 395(10223): e30-e31. DOI: 10.1016/S0140-6736(20)30304-4.
[8]GRALINSKI L E, MENACHERY V D. Return of the coronavirus: 2019-nCoV[J]. Viruses, 2020, 12(2): E135. DOI: 10.3390/v12020135.
[9]ZUMLA A, HUI D S, AZHAR E I, et al. Reducing mortality from 2019-nCoV: host-directed therapies should be an option[J]. Lancet, 2020, 395(10224): e35-e36. DOI: 10.1016/S0140-6736(20)30305-6.
[10]CVETKOVIC R S, GOA K L. Lopinavir/ritonavir: a review of its use in the management of HIV infection[J]. Drugs, 2003, 63(8): 769-802. DOI: 10.2165/00003495-200363080-00004.
[11]陈军, 凌云, 席秀红, 等. 洛匹那韦利托那韦和阿比多尔用于治疗新型冠状病毒肺炎的有效性研究[J]. 中华传染病杂志, 2020, 38: E008. DOI: 10.3760/cma.j.cn311365-20200210-00050.
CHEN J, LING Y, XI X H, et al. Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia[J]. Chin J Infect Dis, 2020,38: E008. DOI: 10.3760/cma.j.cn311365-20200210-00050.
[12]BIJKER E M, BASTIAENS G J, TEIRLINCK A C, et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity[J]. Proc Natl Acad Sci USA, 2013, 110(19): 7862-7867. DOI: 10.1073/pnas.1220360110.
[13]DELVECCHIO R, HIGA L M, PEZZUTO P, et al. Chloroquine, an endocytosis blocking agent, inhibits zika virus infection in different cell models[J]. Viruses, 2016, 8(12): E322. DOI: 10.3390/v8120322.
[14]MIZUI T, YAMASHINA S, TANIDA I, et al. Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy[J]. J Gastroenterol, 2010, 45(2): 195-203. DOI: 10.1007/s00535-009-0132-9.
[15]WANG M L, CAO R Y, ZHANG L K, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Res, 2020. DOI: 10.1038/s41422-020-0282-0.
[16]KADAM R U, WILSON I A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol[J]. Proc Natl Acad Sci USA, 2017, 114(2): 206-214. DOI: 10.1073/pnas.1617020114.
[17]PCHEUR E I, LAVILLETTE D, ALCARAS F, et al. Biochemical mechanism of hepatitis C virus inhibition by the broad-spectrum antiviral arbidol[J]. Biochemistry, 2007, 46(20): 6050-6059. DOI: 10.1021/bi700181j.
[18]GHOSH A K, DAWSON Z L, MITSUYA H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV[J]. Bioorg Med Chem, 2007, 15(24): 7576-7580. DOI: 10.1016/j.bmc.2007.09.010.
[19]BEN-ZVI I, KIVITY S, LANGEVITZ P, et al. Hydroxychloroquine: from malaria to autoimmunity[J]. Clin Rev Allergy Immunol, 2012, 42(2): 145-153. DOI: 10.1007/s12016-010-8243-x.
[20]WANG L F, LIN Y S, HUANG N C, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery[J]. J Interferon Cytokine Res, 2015, 35(3): 143-156. DOI: 10.1089/jir.2014.0038.
[21]SPERBER K, LOUIE M, KRAUS T, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1[J]. Clin Ther, 1995, 17(4): 622-636. DOI: 10.1016/0149-2918(95)80039-5.
[22]FURUTA Y, GOWEN B B, TAKAHASHI K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor[J]. Antiviral Res, 2013, 100(2): 446-454. DOI: 10.1016/j.antiviral.2013.09.015.
[23]OESTEREICH L, LDTKE A, WURR S, et al. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model[J]. Antiviral Res, 2014, 105: 17-21. DOI:10.1016/j.antiviral.2014.02.014.
[24]FURUTA Y, TAKAHASHI K, SHIRAKI K, et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections[J]. Antiviral Res, 2009, 82(3): 95-102.DOI:10.1016/j.antiviral.2009.02.198.
[25]ROCHA-PEREIRA J, JOCHMANS D, DALLMEIER K, et al. Favipiravir (T-705) inhibits in vitro Norovirus replication[J]. Biochem Biophys Res Commun, 2012, 424(4): 777-780. DOI: 10.1016/j.bbrc.2012.07.034.
[26]TCHESNOKOV E P, FENG J Y, PORTER D P, et al. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir[J]. Viruses, 2019, 11(4): E326. DOI: 10.3390/v11040326.
[27]DE WIT E, FELDMANN F, CRONIN J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection[J]. Proc Natl Acad Sci USA, 2020: 201922083. DOI: 10.1073/pnas.1922083117.
[28]AGOSTINI M L, ANDRES E L, SIMS A C, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease[J]. mBio, 2018, 9(2): e00221-18. DOI: 10.1128/mbio.00221-18.
[29]HOLSHUE M L, DEBOLT C, LINDQUIST S, et al. First case of 2019 novel coronavirus in the United States[J]. N Engl J Med, 2020, 382(10): 929-936. DOI: 10.1056/NEJMoa2001191.
[30]PEDERSEN S F, HO Y C. SARS-CoV-2: a storm is raging[J]. J Clin Invest, 2020: 137647. DOI:10.1172/JCI137647.
[31]CONTI P, RONCONI G, CARAFFA A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies[J]. J Biol Regul Homeost Agents, 2020, 34(2): 1. DOI:10.23812/CONTI-E.
[32]ZHANG C, WU Z, LI J W, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality[J]. Int J Antimicrob Agents, 2020: 105954. DOI:10.1016/j.ijantimicag.2020.105954.
[33]BARRATT-DUE A, THORGERSEN E B, EGGE K, et al. Combined inhibition of complement C5 and CD14 markedly attenuates inflammation, thrombogenicity, and hemodynamic changes in porcine Sepsis[J]. J Immunol, 2013, 191(2): 819-827. DOI: 10.4049/jimmunol.1201909.
[34]ZHOU B P, ZHONG N S, GUAN Y. Treatment with convalescent plasma for influenza A (H5N1) infection[J]. N Engl J Med, 2007, 357(14): 1450-1451. DOI: 10.1056/NEJMc070359.
[35]VAN GRIENSVEN J, EDWARDS T, DE LAMBALLERIE X, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea[J]. N Engl J Med, 2016, 374(1): 33-42. DOI: 10.1056/NEJMoa1511812.
[36]BURNOUF T, RADOSEVICH M. Treatment of severe acute respiratory syndrome with convalescent plasma[J]. Hong Kong Med J, 2003, 9(4): 309; author reply 310.
[37]WONG V W, DAI D, WU A K, et al. Treatment of severe acute respiratory syndrome with convalescent plasma[J]. Hong Kong Med J, 2003, 9(3): 199-201.
[38]FLETCHER T E, FISCHER W A 2nd, JACOB S T. Convalescent plasma for Ebola virus disease[J]. N Engl J Med, 2016, 374(25): 2499-2500. DOI: 10.1056/NEJMc1602284.
[39]BAJORATH J. Integration of virtual and high-throughput screening[J]. Nat Rev Drug Discov, 2002, 1(11): 882-894. DOI: 10.1038/nrd941.
[40]BLUNDELL T L. Structure-based drug design[J]. Nature, 1996, 384(6604 Suppl): 23-26. DOI: 10.1038/384023a0.
[41]LOUNNAS V, RITSCHEL T, KELDER J, et al. Current progress in structure-based rational drug design marks a new mindset in drug discovery[J]. Comput Struct Biotechnol J, 2013, 5: e201302011. DOI: 10.5936/csbj.201302011.
[42]PICAZO E, GIORDANETTO F. Small molecule inhibitors of Ebola virus infection[J]. Drug Discov Today, 2015, 20(2): 277-286. DOI: 10.1016/j.drudis.2014.12.010.
[43]ROSTAMI-HODJEGAN A, TUCKER G T. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data[J]. Nat Rev Drug Discov, 2007, 6(2): 140-148. DOI: 10.1038/nrd2173.

更新日期/Last Update: 2020-05-06