[1]罗乔荔,王一松,关宇光,等.Rasmussen脑炎患者脑组织的转录组学特征分析[J].第三军医大学学报,2020,42(14):1407-1413.
 LUO Qiaoli,WANG Yisong,GUAN Yuguang,et al.Analysis of transcriptomic characteristics of brain tissue in patients with Rasmussen encephalitis[J].J Third Mil Med Univ,2020,42(14):1407-1413.
点击复制

Rasmussen脑炎患者脑组织的转录组学特征分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第14期
页码:
1407-1413
栏目:
神经科学
出版日期:
2020-07-30

文章信息/Info

Title:
Analysis of transcriptomic characteristics of brain tissue in patients with Rasmussen encephalitis
作者:
罗乔荔王一松关宇光陈思畅范东瀛王培刚栾国明安静
首都医科大学基础医学院病原生物学系微生物学教研室;首都医科大学三博脑科医院功能神经外科
Author(s):
LUO Qiaoli WANG Yisong GUAN Yuguang CHEN Sichang FAN Dongying WANG Peigang LUAN Guoming AN Jing

Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069; 2Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China

关键词:
Rasmussen脑炎癫痫RNA-Seq转录组学
Keywords:
Rasmussen encephalitis epilepsy RNA-Seq transcriptome
分类号:
R322.81; R394.3; R725.123
文献标志码:
A
摘要:

目的探究Rasmussen脑炎(Rasmussen encephalitis,RE)患者脑组织的转录组学特征。方法采用RNA-seq的方法,对2008年4月至2013年12月首都医科大学附属北京三博脑科医院收治的RE及颞叶癫痫(temporal lobe epilepsy,TLE)患者(对照)中各选取4例脑组织的基因表达谱进行检测。结果聚类分析显示RE患者及对照脑组织差异表达基因(differentially expressed genes,DEGs)谱存在明显差异。共筛选出1 285个DEGs,其中782个(60.9%)下调,503个(39.1%)上调。上调表达的DEGs主要富集于神经元信号转导相关的通路,可能与RE患者频繁的癫痫发作相关;下调表达的DEGs主要富集于细胞骨架、细胞周期及趋化作用相关的通路,可能与RE患者脑组织中神经元的丢失及再生以及部分病原体感染后的免疫应答相关。上调表达的关键基因为TAS2R40、HTR4、NAP1L2,下调表达的关键基因为CXXC1、SEPTIN8、CCR7。结论RE患者脑组织的转录组学具有明显特征,DEGs主要富集于神经元信号转导、细胞周期以及趋化作用相关的通路中。

Abstract:

ObjectiveTo investigate the transcriptomic characteristics of the brain tissue in patients with Rasmussen encephalitis (RE). MethodsRNA-seq technique was used to detect the gene expression profiles in the brain tissues from 4 patients with RE and 4 with temporal lobe epilepsy (TLE) admitted to Sanbo Brain Hospital, Capital Medical University between April, 2008 and December, 2013. ResultsCluster analysis showed significant differences in the differentially expressed genes (DEGs) in the brain tissue between the patients with RE and those with TLE. We identified a total of 1 285 DEGs, of which 782 (60.9%) were down-regulated and 503 (39.1%) were up-regulated in RE. The up-regulated DEGs were mainly enriched in the pathways associated with neuronal signal transduction, possibly in relation with frequent seizures in patients with RE; the down-regulated DEGs were mainly enriched in the pathways associated with cytoskeleton, cell cycle and chemotaxis, which may be related to neuronal loss and regeneration and immune responses to infection by some pathogens in the brain tissue of patients with RE. TAS2R40, HTR4 and NAP1L2 were identified as the key up-regulated DEGs, and CXXC1, SEPTIN8 and CCR7 as the key down-regulated DEGs. ConclusionThe brain tissue of patients with RE shows characteristic transcriptomic changes, and the DEGs are mainly enriched in neuronal signal transduction, cell cycle and chemotaxis-related pathways.

参考文献/References:

[1]RASMUSSEN T, OLSZEWSKI J, LLOYDSMITH D. Focal seizures due to chronic localized encephalitis[J]. Neurology, 1958, 8(6): 435-445. DOI: 10.1212/wnl.8.6.435.

[2]BIEN C G, GRANATA T, ANTOZZI C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement[J]. Brain, 2005, 128(Pt 3): 454-471. DOI: 10.1093/brain/awh415.

[3]VILLANI F, PINCHERLE A, ANTOZZI C, et al. Adult-onset Rasmussen’s encephalitis: anatomical-electrographic-clinical features of 7 Italian cases[J].Epilepsia, 2006, 47(Suppl 5): 41-46. DOI: 10.1111/j.1528-1167.2006.00876.x.

[4]GRANATA T, ANDERMANN F. Rasmussen encephalitis[J].Handb Clin Neurol, 2013, 111: 511-519. DOI: 10.1016/b978-0-444-52891-9.00054-3.

[5]WANG Q, ZHU Z, WANG G, et al. Functional hemispherectomy for adult Rasmussen encephalitis: a case report and literature review[J]. Turk Neurosurg, 2019, 29(6): 945-949. DOI: 10.5137/1019-5149.jtn.21188-17.1.

[6]VARADKAR S, BIEN C G, KRUSE C A, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances[J]. Lancet Neurol, 2014, 13(2): 195-205. DOI: 10.1016/S1474-4422(13)70260-6.

[7]CEPEDA C, CHANG J W, OWENS G C, et al. In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability[J]. CNSNeurosci Ther, 2015, 21(2): 152-163. DOI: 10.1111/cns.12352.

[8]GNDZ A, K1Z1LTAN M E, CO瘙塁KUN T, et al. Electrophysiological findings in Rasmussen’s syndrome[J]. Epileptic Disord, 2016, 18(1): 73-76. DOI: 10.1684/epd.2016.0804.

[9]ROGERS S W, ANDREWS P I, GAHRING L C, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis[J]. Science, 1994, 265(5172): 648-651. DOI: 10.1126/science.8036512.

[10]GURCHARRAN K, KARKARE S. Anti-N-methyl-D-aspartate receptor encephalitis and Rasmussen-like syndrome: an association?[J]. Pediatr Neurol, 2017, 66: 104-107. DOI: 10.1016/j.pediatrneurol.2016.10.001.

[11]DI LIBERTO G, PANTELYUSHIN S, KREUTZFELDT M, et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping[J]. Cell, 2018, 175(2): 458-471.e19. DOI: 10.1016/j.cell.2018.07.049.

[12]CONTE C, EBELING M, MARCUZ A, et al. Identification and characterization of human taste receptor genes belonging to the TAS2R family[J]. Cytogenet Genome Res, 2002, 98(1): 45-53. DOI: 10.1159/000068546.

[13]PAUWELYN V, CEELEN W, LEFEBVRE R A. Synergy between 5-HT4 receptor stimulation and phosphodiesterase 4 inhibition in facilitating acetylcholine release in human large intestinal circular muscle[J]. Neurogastroenterol Motil, 2018, 30(2). DOI: 10.1111/nmo.13162.

[14]ROUGEULLE C, AVNER P. Cloning and characterization of a murine brain specific gene Bpx and its human homologue lying within the Xic candidate region[J]. Hum Mol Genet, 1996, 5(1): 41-49. DOI: 10.1093/hmg/5.1.41.

[15]ROGNER U C, SPYROPOULOS D D, LE NOVRE N, et al. Control of neurulation by the nucleosome assembly protein-1-like 2[J]. Nat Genet, 2000, 25(4): 431-435. DOI: 10.1038/78124.

[16]ATTIA M, FRSTER A, RACHEZ C, et al. Interaction between nucleosome assembly protein 1-like family members[J]. J Mol Biol, 2011, 407(5): 647-660. DOI: 10.1016/j.jmb.2011.02.016.

[17]CARLONE D L, SKALNIK D G. CpG binding protein is crucial for early embryonic development[J]. Mol Cell Biol, 2001, 21(22): 7601-7606. DOI: 10.1128/mcb.21.22.7601-7606.2001.

[18]CAO W Q, GUO J, WEN X F, et al. CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation[J]. Nat Commun, 2016, 7: 11687. DOI: 10.1038/ncomms11687.

[19]LIN F, MENG X, GUO Y, et al. Epigenetic initiation of the TH17 differentiation program is promoted by CXXC finger protein 1[J]. Sci Adv, 2019, 5(10): eaax1608. DOI: 10.1126/sciadv.aax1608.

[20]HALL P A, JUNG K, HILLAN K J, et al. Expression profiling the human septin gene family[J]. J Pathol, 2005, 206(3): 269-278. DOI: 10.1002/path.1789.

[21]BIRKENBACH M, JOSEFSEN K, YALAMANCHILI R, et al. Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors[J]. J Virol, 1993, 67(4): 2209-2220.

[22]MOUTAFTSI M, BRENNAN P, SPECTOR S A, et al. Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalo-virus-infected dendritic cells[J]. J Virol, 2004, 78(6): 3046-3054. DOI: 10.1128/jvi.78.6.3046-3054.2004.

[23]ZHANG Y, WANG Y S, CHEN S C, et al. Expression of human cytomegalovirus components in the brain tissues of patients with Rasmussen’s encephalitis[J]. Virol Sin, 2017, 32(2): 115-121. DOI: 10.1007/s12250-016-3917-z.

[24]WANG X, WANG Y S, LIU D, et al. Elevated expression of EBV and TLRs in the brain is associated with Rasmussen’s encephalitis[J]. Virol Sin, 2017, 32(5): 423-430. DOI: 10.1007/s12250-017-4058-8.

[25]LIU D, WANG X, WANG Y S, et al. Detection of EBV and HHV6 in the brain tissue of patients with Rasmussen’s encephalitis[J]. Virol Sin, 2018, 33(5): 402-409. DOI: 10.1007/s12250-018-0063-9.

[26]LAGARDE S, VILLENEUVE N, TRBUCHON A, et al. Anti-tumor necrosis factor alpha therapy (adalimumab) in Rasmussen’s encephalitis: an open pilot study[J]. Epilepsia, 2016, 57(6): 956-966. DOI: 10.1111/epi.13387.

[27]PAPETTI L, NICITA F, GRANATA T, et al. Early add-on immunoglobulin administration in Rasmussen encephalitis: the hypothesis of neuroimmunomodulation[J]. Med Hypotheses, 2011, 77(5): 917-920. DOI: 10.1016/j.mehy.2011.08.011.

相似文献/References:

[1]李哲,李健,李攀,等.3种抗癫痫新药对部分性癫痫患者的临床疗效及脑电的影响[J].第三军医大学学报,2012,34(17):1800.
[2]杨辉.神经电刺激技术在癫痫治疗中的应用[J].第三军医大学学报,2012,34(22):2235.
 Yang Hui.Brain electric stimulation in treatment of epilepsy[J].J Third Mil Med Univ,2012,34(14):2235.
[3]张政,罗勇军,晏宁,等.GABBR1基因G1465A多态与中国汉族青少年肌阵挛癫痫的关系[J].第三军医大学学报,2007,29(15):1488.
 ZHANG Zheng,LUO Yong-jun,YAN Ning,et al.G1465A polymorphism of GABBR1 gene is associated with juvenile myoclonic epilepsy in Chinese Han nationality[J].J Third Mil Med Univ,2007,29(14):1488.
[4]孔敏,蒋莉,洪思琪,等.癫痫儿童外周血p-糖蛋白水平在预测儿童抗癫痫药物疗效中的作用[J].第三军医大学学报,2013,35(02):153.
 Kong Min,Jiang Li,Hong Siqi,et al.Role of peripheral P-glycoprotein in predicting efficacy of antiepileptic drugs in epilepsy children[J].J Third Mil Med Univ,2013,35(14):153.
[5]王佩,王海祥,刘瑞春,等.尼莫地平对癫痫大鼠海马Ca2+浓度及Ca2+/钙调蛋白依赖性蛋白激酶Ⅱα表达的影响[J].第三军医大学学报,2008,30(03):226.
 WANG Pei,WANG Hai-xiang,LIU Rui-chun,et al.Effect of nimodipine on Ca2+ concentration and calcium/calmodulin-dependent protein kinase Ⅱα expression in hippocampus of epileptic rats[J].J Third Mil Med Univ,2008,30(14):226.
[6]何选丽,晏勇,马勋泰,等.卡莫司汀诱导大鼠皮质发育障碍模型的研究[J].第三军医大学学报,2007,29(17):1729.
[7]耿明英,程远,许民辉,等.伽玛刀对红藻氨酸模型大鼠海马形态学及苔藓纤维变化的影响[J].第三军医大学学报,2007,29(10):959.
 GENG Ming-ying,CHENG Yuan,XU Min-hui,et al.Effects of gamma knife on morphological changes of hippocampal formation and mossy fiber sprouting in epileptic rats induced by kainic acid[J].J Third Mil Med Univ,2007,29(14):959.
[8]王雨,王爱民,杜全印,等.肾性癫痫致双侧股骨颈骨折1例[J].第三军医大学学报,2006,28(24):2443.
[9]张映琦,廖维宏,李应玉,等.褪黑素对匹罗卡品致痫模型鼠行为改变的影响[J].第三军医大学学报,2005,27(06):521.
[10]张映琦,廖维宏.褪黑素在实验性癫痫中的抗惊厥作用[J].第三军医大学学报,2005,27(03):268.

更新日期/Last Update: 2020-07-23