[1]章利彬,陈浩,张洁,等.小鼠痕迹性眨眼条件反射建立过程中小脑皮层神经元活动的变化特征[J].第三军医大学学报,2020,42(12):1188-1194.
 ZHANG Libin,CHEN Hao,ZHANG Jie,et al.Dynamic neuronal activity of cerebellar cortex during trace eyeblink conditioning in mice[J].J Third Mil Med Univ,2020,42(12):1188-1194.
点击复制

小鼠痕迹性眨眼条件反射建立过程中小脑皮层神经元活动的变化特征(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第12期
页码:
1188-1194
栏目:
神经科学
出版日期:
2020-06-30

文章信息/Info

Title:
Dynamic neuronal activity of cerebellar cortex during trace eyeblink conditioning in mice
作者:
章利彬陈浩张洁周安 伍亚民闫洁
陆军军医大学(第三军医大学)野战外科研究所第三研究室,创伤、烧伤与复合伤国家重点实验室1;陆军军医大学(第三军医大学)基础医学院:生理学教研室,脑与智能研究院2,学员2大队7营3
Author(s):
ZHANG Libin CHEN Hao ZHANG Jie ZHOU An WU Yamin YAN Jie

State Key Laboratory of Trauma, Burns and Combined Injury, Department 3, Research Institute of Surgery, Chongqing, 400042; 2Department of Physiology,  Institute of Brain and Intelligence. 3Squadron 7, Battalion 2, Army Medical University (Third Military Medical University),  College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
条件反射眨眼小脑皮层神经元
Keywords:
conditioned reftex eyeblink cerebellum neurons
分类号:
R338.1;R338.61;R338.80
文献标志码:
A
摘要:

目的研究痕迹性眨眼条件反射建立过程中,小鼠小脑皮层神经元放电活动的动态变化规律。方法将150 ms蓝光作为条件刺激,100 ms角膜吹气作为非条件刺激,进行配对刺激。连续5 d,训练小鼠(n=6)建立痕迹性眨眼条件反射。在条件反射训练过程中,使用tetrode电极记录小鼠小脑皮层内神经元的放电活动。结果通过连续5 d配对刺激训练,小鼠的条件性眨眼反应显著增加(P<0.01),其发生率从第1 天的(35.3±10.5)%上升至第5 天的(70.9±3.2)%。在小脑皮层记录到两类与痕迹性眨眼条件反射行为相关的神经元放电活动:①刺激间期活动减弱神经元(训练早期:n=11,训练后期:n=23);②刺激间期活动增强神经元(训练早期:n=18,训练后期:n=7)。相对于痕迹性眨眼条件反射的训练早期,训练后期小脑皮层内刺激间期活动减弱的神经元比例增加(早期:16.7%,后期:36.5%),而刺激间期活动增强的神经元比例减少(早期:27.3%,后期:11.2%),放电减弱和增强模式神经元的组成比例发生显著变化(P<0.01)。此外,随着条件反射训练的进行,小脑皮层神经元刺激间期活动变化的起始潜伏期显著后移(P<0.05),但活动强度没有发生显著变化(P>0.05)。结论在痕迹性眨眼条件反射建立过程中,小脑皮层神经元通过群体放电活动从增强向减弱的模式转换来促进痕迹性条件性眨眼反射的建立。
 

Abstract:

ObjectiveTo investigate the dynamic changes of neuronal activity in the cerebellar cortex during the acquisition of trace eyeblink conditioning (tEBC) in mice. MethodsA 150-ms pulse of blue light conditioned stimulus (CS) followed by a 100-ms air-puff unconditioned stimulus (US) with a 250-ms trace interval for 5 consecutive training days was performed to train the mice (n=6) to establish tEBC. During daily tEBC training, the neuronal activities in the cerebellar cortex were continuously recorded by tetrode electrodes. ResultsDuring the acquisition of tEBC, the incidence of conditioned eyeblink response (CR) in mice was significantly increased (P<0.01), with the incidence increased from (35.3±10.5)% on the 1st day to (70.9±3.2)% on the 5th day. In particular, 2 types of learning-related neuronal activities were observed in the cerebellar cortex: ① trace interval-decreased  firing neurons (early stage: n=11, late stage: n=23) and ② trace interval-increased firing neurons(early stage: n=18, late stage: n=7). The proportions of 2 types of cerebellar cortical neurons were significantly different to those at the early-learning stage (P<0.01): the percentage of trace interval-decreased firing neurons was increased (early stage: 16.7%, late stage: 36.5%), whereas that of trace interval-increased firing neurons was decreased (early stage: 27.3%, late stage: 11.2%). Moreover, with the acquisition of tEBC response, the latency of CS-evoked decreased firing activity in the cerebellar cortex was significantly prolonged (P<0.05). In contrast, the magnitude of the firing responses failed to change (P>0.05). ConclusionDuring the acquisition of tEBC, the discharge of neurons in the cerebellar cortex exhibits changed pattern from the enhancement to attenuation, which is highly correlated to the CR acquisition.

参考文献/References:

[1]SATHYANESAN A, ZHOU J, SCAFIDI J, et al. Emerging connections between cerebellar development, behaviour and complex brain disorders[J]. Nat Rev Neurosci, 2019, 20(5): 298-313. DOI:10.1038/s41583-019-0152-2.

[2]ORLOV N D, O’DALY O, TRACY D K, et al. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia[J]. Brain, 2017, 140(9): 2490-2497. DOI:10.1093/brain/awx170.

[3]TAKEHARA-NISHIUCHI K. The anatomy and physiology of eyeblink classical conditioning[J]. Curr Top Behav Neurosci, 2018, 37: 297-323. DOI: 10.1007/7854_2016_455.

[4]HALVERSON H E, KHILKEVICH A, MAUK M D. Cerebellar processing common to delay and trace eyelid conditioning[J]. J Neurosci, 2018, 38(33): 7221-7236. DOI: 10.1523/JNEUROSCI.0430-18.2018.

[5]CHEN H, WANG Y J, YANG L, et al. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior[J]. Sci Rep, 2016, 6: 20960. DOI: 10.1038/srep20960.

[6]SUTER E E, WEISS C, DISTERHOFT J F. Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during time-bridging learning[J]. Hippocampus, 2019, 29(6): 511-526. DOI: 10.1002/hipo.23041.

[7]LI D B, YAO J, SUN L, et al. Reevaluating the ability of cerebellum in associative motor learning[J]. Sci Rep, 2019, 9(1): 6029. DOI: 10.1038/s41598-019-42413-5.

[8]SCHREURS B G. Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning[J]. Neurobiol Learn Mem, 2019, 166: 107094. DOI: 10.1016/j.nlm.2019.107094.

[9]ZHANG J, ZHANG K Y, ZHANG L B, et al. A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice[J]. Sci Rep, 2019, 9(1): 1857. DOI: 10.1038/s41598-018-37885-w.

[10]QIN H, FU L, HU B, et al. A visual-cue-dependent memory circuit for place navigation[J]. Neuron, 2018, 99(1): 47-55.e4. DOI: 10.1016/j.neuron.2018.05.021.

[11]HALVERSON H E, KHILKEVICH A, MAUK M D. Relating cerebellar Purkinje cell activity to the timing and amplitude of conditioned eyelid responses[J]. J Neurosci, 2015, 35(20): 7813-7832. DOI: 10.1523/JNEUROSCI.3663-14.2015.

[12]ANIKEEVA P, ANDALMAN A S, WITTEN I, et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice[J]. Nat Neurosci, 2011, 15(1): 163-170. DOI: 10.1038/nn.2992.

[13]TEN BRINKE M M, BOELE H J, SPANKE J K, et al. Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice[J]. Cell Rep, 2015, 13(9): 1977-1988. DOI: 10.1016/j.celrep.2015.10.057.

[14]ALBERGARIA C, SILVA N T, PRITCHETT D L, et al. Locomotor activity modulates associative learning in mouse cerebellum[J]. Nat Neurosci, 2018, 21(5): 725-735. DOI: 10.1038/s41593-018-0129-x.

[15]KHILKEVICH A, ZAMBRANO J, RICHARDS M M, et al. Cerebellar implementation of movement sequences through feedback[J]. Elife, 2018, 7: e37443. DOI: 10.7554/eLife.37443.

[16]GAO Z Y, VAN BEUGEN B J, DE ZEEUW C I. Distributed synergistic plasticity and cerebellar learning[J]. Nat Rev Neurosci, 2012, 13(9): 619-635. DOI: 10.1038/nrn3312.

相似文献/References:

[1]林曦,胡波,杨丽,等.蝇蕈醇小脑齿状-中位核微注射对豚鼠经典眨眼条件反射建立的影响[J].第三军医大学学报,2008,30(06):499.
 LIN Xi,HU Bo,YANG Li,et al.Microinjection of Muscimol into cerebellular dentate-interpositus nuclei affects acquisition of classical eyeblink conditioning in guinea pigs[J].J Third Mil Med Univ,2008,30(12):499.
[2]杨丽,胡波,范郑丽,等.不同眼轮匝肌活动记录方法对豚鼠痕迹性眨眼条件反射建立的影响[J].第三军医大学学报,2009,31(18):1732.
 YANG Li,HU Bo,FAN Zheng-li,et al.Effects of different recording methods for orbicularis oculi muscle activity on acquisition of trace eyeblink conditioning in guinea pigs[J].J Third Mil Med Univ,2009,31(12):1732.
[3]陈浩,胡波,杨丽,等.延迟性和痕迹性条件反射建立过程中豚鼠眨眼反应特征参数的变化[J].第三军医大学学报,2010,32(02):95.
 Chen Hao,Hu Bo,Yang Li,et al.Characteristic parameters of eyeblink responses during acquisition of delay and trace conditioning in guinea pigs[J].J Third Mil Med Univ,2010,32(12):95.
[4]薛钰奇,章利彬,杨彦新,等.豚鼠延迟性和痕迹性眨眼条件反射消退的行为学特征[J].第三军医大学学报,2015,37(04):310.
 Xue Yuqi,Zhang Libin,Yang Yanxin,et al.Behavioral characteristics during extinction of delay and trace eyeblink conditionings in guinea pigs[J].J Third Mil Med Univ,2015,37(12):310.

更新日期/Last Update: 2020-06-19