[1]胡志安,何超.2019年中国脑科学研究进展[J].第三军医大学学报,2020,42(05):431-436.
 HU Zhi&rsquo,an,HE Chao.Progress in brain science in China during 2019[J].J Third Mil Med Univ,2020,42(05):431-436.
点击复制

2019年中国脑科学研究进展(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
431-436
栏目:
神经科学
出版日期:
2020-03-15

文章信息/Info

Title:
Progress in brain science in China during 2019
作者:
胡志安何超
陆军军医大学(第三军医大学)基础医学院生理学教研室,脑与智能研究院
 
Author(s):
HU Zhi’an HE Chao

Department of Physiology, Institute of Brain and Intelligence, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
本能行为情感障碍成瘾记忆神经递质探针脑科学研究进展中国
Keywords:
instinctive behaviors affective disorders addictive memory neurotransmitter probe brain science research progress China
分类号:
R322.81
文献标志码:
A
摘要:

脑是人体最为复杂的器官,揭示脑的奥秘被认为是生命科学研究的“终极疆域”。迄今,脑科学研究在微观和宏观层面上已取得了一系列重大进展。中国科学家也为脑科学的发展做出了积极的贡献。在过去1年里,中国神经科学家在以下几个方面取得了重要成果:①脑功能原理,如进一步揭示了捕食、防御等本能行为的神经环路机制;②脑疾病的发病机制与诊治,如抑郁症、焦虑症、社交障碍的发病机制,亨廷顿病潜在的新疗法;③新技术、新材料的开发与应用,如新型去甲肾上腺素神经递质探针的开发,应用新型纳米材料使小鼠获得红外光感知能力。本文遴选了其中具有代表性的工作,并对其进行介绍。

Abstract:

Brain is the most complex organ in human body, and revealing its mystery is considered as the “ultimate territory” in biological science research. Till now, a series of significant progress has been made in the brain science research at the micro and macro levels. Chinese scientists have also made positive contributions to the development of the brain science. In the past year, Chinese scientists have made important achievements in the following aspects: ① the principle of brain functions, such as further revealing the circuitry mechanisms of predatory, defensive and other instinctive behaviors; ② the pathogenesis, diagnosis and treatment of brain diseases, such as the pathogenesis of depression, anxiety, social disorder and the potential new treatment of Huntington’s disease; ③ the development and application of new technologies and materials, such as the development of norepinephrine neurotransmitter probe and the application of new nanomaterials that enables mice to obtain infrared light perception. In this article, the representative works are selected and introduced.

参考文献/References:

[1]SHANG C P, LIU A X, LI D P, et al. A subcortical excitatory circuit for sensory-triggered predatory hunting in mice[J]. Nat Neurosci, 2019, 22(6): 909-920. DOI:10.1038/s41593-019-0405-4. 
[2]ZHAO Z D, CHEN Z M, XIANG X K, et al. Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting[J]. Nat Neuro-sci, 2019, 22(6): 921-932. DOI:10.1038/s41593-019-0404-5. 
[3]ZHOU Z, LIU X, CHEN S, et al.A VTA GABAergic neural circuit mediates visually evoked innate defensive responses[J]. Neuron,2019,103(3):473-488.e6. DOI: 10.1016/j.neuron.2019.05.027.
[4]DONG P, WANG H, SHEN X F,et al. A novel cortico-intrathalamic circuit for flight behavior[J]. Nat Neurosci, 2019, 22(6): 941-949. DOI: 10.1038/s41593-019-0391-6.
[5]SHEN C J, ZHENG D, LI K X, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior[J]. Nat Med, 2019, 25(2): 337-349. DOI:10.1038/s41591-018-0299-9. 
[6]ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658. DOI: 10.1038/s41593-019-0468-2.
[7]HUANG L, XI Y, PENG Y F, et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy[J]. Neuron, 2019, 102(1): 128-142.e8. DOI: 10.1016/j.neuron.2019.01.037.
[8]FAN K Q, LI Y Y, WANG H L,et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior[J]. Cell, 2019, 179(4): 864-879.e19. DOI: 10.1016/j.cell.2019.10.001.
[9]SHAO L X, JIANG Q, LIU X X, et al. Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons[J]. Mol Psychiatry, 2019, 24(10): 1461-1477. DOI:10.1038/s41380-019-0402-8. 
[10]GUO B, CHEN J, CHEN Q, et al.Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice[J]. Nat Neurosci,2019 ,22(8):1223-1234. DOI: 10.1038/s41593-019-0445-9.
[11]XU H F, LIU L, TIAN Y Y, et al. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex[J]. Neuron, 2019, 102(3): 668-682.e5. DOI:10.1016/j.neuron.2019.02.026. 
[12]LI Y, LI C Y, XI W, et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence[J]. Neuron, 2019, 101(4): 748-761.e5. DOI: 10.1016/j.neuron.2018.12.012. 
[13]ZHOU Y M, ZHU H W, LIU Z Y, et al. A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine[J]. Nat Neurosci, 2019, 22(12): 1986-1999. DOI:10.1038/s41593-019-0524-y. 
[14]SONG J, SHAO D, GUO X, et al. Crucial role of feedback signals from prelimbic cortex to basolateral amygdala in the retrieval of morphine withdrawal memory[J]. Sci Adv,2019, 5: eaat3210.
[15]SU X Y, CHEN M, YUAN Y, et al. Central processing of itch in the midbrain reward center[J]. Neuron, 2019, 102(4): 858-872.e5. DOI: 10.1016/j.neuron.2019.03.030.
[16]LI Z, WANG C, WANG Z,et al.Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds[J]. Nature, 2019, 575(7781): 203-209. DOI: 10.1038/s41586-019-1722-1.
[17]FENG J, ZHANG C, LISCHINSKY J E, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine[J]. Neuron, 2019, 102(4): 745-761.e8. DOI: 10.1016/j.neuron.2019.02.037.
[18]SUN Q T, LI X N, REN M, et al. A whole-brain map of long-range inputs to GABAergic interneurons in the mouse medial prefrontal cortex[J]. Nat Neurosci, 2019, 22(8): 1357-1370. DOI: 10.1038/s41593-019-0429-9. 
[19]MA Y Q, BAO J, ZHANG Y W, et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae[J]. Cell, 2019, 177(2): 243-255.e15. DOI:10.1016/j.cell.2019.01.038. 
[20]COOK S J, JARRELL T A, BRITTIN C A, et al.Whole-animal connectomes of both Caenorhabditis elegans sexes[J]. Nature,2019 ,571(7763):63-71. DOI: 10.1038/s41586-019-1352-7.
[21]MARQUES J C, LI M, SCHAAK D, et al. Internal state dynamics shape brainwide activity and foraging behaviour[J]. Nature, 2020, 577(7789): 239-243. DOI:10.1038/s41586-019-1858-z. 
[22]LUKOWSKI S W, LO C Y, SHAROV A A, et al. A single-cell transcriptome atlas of the adult human retina[J]. EMBO J, 2019, 38(18): e100811. DOI: 10.15252/embj.2018100811.
[23]MOFFITT J R, BAMBAH-MUKKU D, EICHHORN S W, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region[J]. Science, 2018, 362(6416): eaau5324. DOI:10.1126/science.aau5324. 
[24]ZHONG S J, ZHANG S, FAN X Y, et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex[J]. Nature, 2018, 555(7697): 524-528. DOI:10.1038/nature25980. 

更新日期/Last Update: 2020-03-06