[1]游启爱,卓文磊,陈正堂.己糖激酶2在NSCLC厄洛替尼耐药中的作用及机制[J].第三军医大学学报,2020,42(05):453-459.
 YOU Qi&rsquo,ai,ZHUO Wenlei,et al.Role and mechanism of hexokinase 2 in erlotinib resistance in non-small cell lung cancer[J].J Third Mil Med Univ,2020,42(05):453-459.
点击复制

己糖激酶2在NSCLC厄洛替尼耐药中的作用及机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
453-459
栏目:
基础医学
出版日期:
2020-03-15

文章信息/Info

Title:
Role and mechanism of hexokinase 2 in erlotinib resistance in non-small cell lung cancer
作者:
游启爱卓文磊陈正堂
陆军军医大学(第三军医大学)第二附属医院全军肿瘤研究所
Author(s):
YOU Qi’ai ZHUO Wenlei CHEN Zhengtang
Cancer Institute of PLA, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
 
关键词:
己糖激酶2非小细胞肺癌厄洛替尼细胞增殖
Keywords:
hexokinase 2 non-small cell lung cancer erlotinib cell proliferation
分类号:
R345; R730.23; R737.9
文献标志码:
A
摘要:

目的观察糖酵解关键酶己糖激酶2(hexokinase 2,HK2)在人非小细胞肺癌(non-small cell lung cancer, NSCLC)组织中的表达,探讨HK2在NSCLC厄洛替尼耐药中的作用及机制。方法在线数据库分析肺癌组织中HK2的表达与预后的关系以及厄洛替尼对NSCLC HK2基因表达的影响;q-PCR体外验证HK2在正常肺上皮细胞、肺癌细胞中的表达差异;q-PCR、Western blot检测厄洛替尼敏感细胞(PC9)、耐药细胞(PC9/ER)中HK2的基础表达以及厄洛替尼干预后HK2的表达情况;进而使用HK2抑制剂3-溴丙酮酸处理PC9/ER,采用CCK-8法检测PC9/ER耐药性、流式细胞术分析PC9/ER的增殖能力。结果HK2与肺癌患者预后不良相关,HK2高表达组患者的总体生存期(overall survival, OS)较低表达组明显缩短(P<0.05);细胞实验证实HK2在PC9/ER中相对高表达,且厄洛替尼可降低PC9细胞中HK2的表达,而对PC9/ER细胞HK2的表达无显著影响;3-溴丙酮酸可有效抑制PC9/ER中HK2的表达,CCK-8法结果表明,PC9/ER 3-溴丙酮酸处理组厄洛替尼IC50值较PC9/ER对照组显著降低[(0.005±0.001)vs (1.967±0.436)μmol/L,P=0.016],提示3-溴丙酮酸处理后能让耐药的PC9/ER细胞恢复对厄洛替尼的敏感性;3-溴丙酮酸处理组增殖指数为(14.1±0.8)%,较对照组(30.4±2.3)%显著减少(P=0.008),提示3-溴丙酮酸能明显抑制耐药细胞增殖。结论HK2是NSCLC患者的不良预后指标,可诱导NSCLC厄洛替尼耐药。可能和其促进糖酵解的机制有关,抑制其表达有望成为逆转NSCLC厄洛替尼耐药的有效策略。

Abstract:

ObjectiveTo observe the expression of hexokinase 2 (HK2), a key enzyme of glycolysis, in human non-small cell lung cancer (NSCLC) tissues, and to investigate the role and mechanism of HK2 in the resistance of NSCLC to erlotinib. MethodsThe relationship between the expression of HK2 and prognosis in lung cancer and the effect of erlotinib on NSCLC HK2 gene exlpression were analyzed through online databases (Kaplan-Meier Plotter, GEPIA and GEO DataSets). q-PCR was used to verify the expression differences of HK2 in normal lung epithelial cells and lung cancer cells in vitro. The basic expression of HK2 in erlotinib-sensitive cells (PC9) and erlotinib-resistant cells (PC9/ER) and the expression of HK2 after erlotinib intervention were detected by q-PCR and Western blotting. After 3-bromopyruvate, a HK2 inhibitor, was used to treat PC9/ER cells, the erlotinib resistance and cell proliferation in PC9/ER cells were detected by CCK-8 assay and flow cytometry. ResultsHK2 was associated with poor prognosis in NSCLC patients, and overall survival (OS) in the group with high expression of HK2 was significantly shortened when compared with the group with low expression (P<0.05). Cell experiments confirmed that HK2 was relatively highly expressed in PC9/ER cells, and erlotinib treatment could reduce HK2 expression in PC9 cells, but had no significant effect on PC9/ER cells. 3-bromopyruvate successfully inhibited the expression of HK2 in PC9/ER cells. CCK-8 assay showed that IC50 value of erlotinib was significantly lower in the PC9/ER 3-bromopyruvate treated group than the PC9/ER control group (0.005±0.001 vs 1.967±0.436 μmol/L, P=0.016), suggesting that the inhibitor treatment can restore the sensitivity of PC9/ER cells to erlotinib. In addition, the treatment also resulted in significantly decreased proliferation index in the 3-bromopyruvate treatment group than the control group [(14.1±0.8)% vs (30.4±2.3)%, P=0.008), indicating that the inhibitor could significantly inhibit the proliferation of drug-resistant cells. ConclusionHK2 is an indicator for poor prognosis in NSCLC patients. It can induce erlotinib resistance to NSCLC, which may be associated with its promotion in glycolysis, and inhibiting its expression may be an effective strategy to reverse erlotinib resistance in NSCLC.

参考文献/References:

[1]TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. DOI:10.3322/caac.21262.
[2]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492.
[3]ROSELL R, CARCERENY E, GERVAIS R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial[J]. Lancet Oncol, 2012, 13(3): 239-246. DOI:10.1016/S1470-2045(11)70393-X.
[4]WU Y L, ZHOU C, LIAM C K, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase Ⅲ, randomized, open-label, ENSURE study[J]. Ann Oncol, 2015, 26(9): 1883-1889. DOI:10.1093/annonc/mdv270.
[5]NEEL D S, BIVONA T G. Resistance is futile: overcoming resistance to targeted therapies in lung adenocarcinoma[J]. NPJ Precis Oncol, 2017, 1: 3. DOI:10.1038/s41698-017-0007-0.
[6]CHABON J J, SIMMONS A D, LOVEJOY A F, et al. Corrigendum: Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients[J]. Nat Commun, 2016, 7: 13513. DOI:10.1038/ncomms13513.
[7]YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247. DOI:10.1158/1078-0432.CCR-12-2246.
[8]LIBERTI M V, LOCASALE J W. The Warburg effect: how does it benefit cancer cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218. DOI:10.1016/j.tibs.2015.12.001.
[9]PAVLOVA N N, THOMPSON C B. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23(1): 27-47. DOI:10.1016/j.cmet.2015.12.006.
[10]WANG H, SHEEHAN R P, PALMER A C, et al. Adaptation of human iPSC-derived cardiomyocytes to tyrosine kinase inhibitors reduces acute cardiotoxicity via metabolic reprogramming[J]. Cell Syst, 2019, 8(5): 412-426.e7. DOI:10.1016/j.cels.2019.03.009.
[11]ROBERTS D J, MIYAMOTO S. Hexokinase Ⅱ integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy[J]. Cell Death Differ, 2015, 22(2): 364. DOI:10.1038/cdd.2014.208
[12]DEWAAL D, NOGUEIRA V, TERRY A R, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin[J]. Nat Commun, 2018, 9(1): 446. DOI:10.1038/s41467-017-02733-4.
[13]LEE H J, LI C F, RUAN D, et al. Non-proteolytic ubiquitination of hexokinase 2 by HectH9 controls tumor metabolism and cancer stem cell expansion[J]. Nat Commun, 2019, 10(1): 2625. DOI:10.1038/s41467-019-10374-y.
[14]WANG L, WANG J, XIONG H, et al. Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53-deficiency-driven castration-resistant prostate cancer[J]. EBio Medicine, 2016, 7: 50-61. DOI:10.1016/j.ebiom.2016.03.022.
[15]ZHOU L, LI M, YU X Y, et al. Repression of hexokinases Ⅱ-mediated glycolysis contributes to piperlongumine-induced tumor suppression in non-small cell lung cancer cells[J]. Int J Biol Sci, 2019, 15(4): 826-837. DOI:10.7150/ijbs.31749. 
[16]LIS P, DYLAG M, NIEDZWIECKA K, et al. The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate[J]. Molecules, 2016, 21(12): E1730. DOI:10.3390/molecules21121730.
[17]JIAO L, ZHANG H L, LI D D, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2)[J]. Autophagy, 2018, 14(4): 671-684. DOI:10.1080/15548627.2017.1381804.
[18]WOLF A, AGNIHOTRI S, MICALLEF J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J]. J Exp Med, 2011, 208(2):313-326. DOI:10.1084/jem.20101470.
[19]GUO W, QIU Z, WANG Z, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology, 2015, 62(4):1132-1144. DOI: 10.1002/hep.27929.
[20]KWIATKOWSKA E, WOJTALA M, GAJEWSKA A, et al. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells[J]. J Bioenerg Biomembr, 2016, 48(1): 23-32. DOI:10.1007/s10863-015-9637-5.
[21]SUN Y M, LIU Z, ZOU X, et al. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer[J]. J Bioenerg Biomembr, 2015, 47(4): 319-329. DOI:10.1007/s10863-015-9612-1.
[22]AKINS N S, NIELSON T C, LE H V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer[J]. Curr Top Med Chem, 2018, 18(6): 494-504. DOI:10.2174/1568026618666180523111351.
[23]PILLAI S R, DAMAGHI M, MARUNAKA Y, et al. Causes, consequences, and therapy of tumors acidosis[J]. Cancer Metastasis Rev, 2019, 38(1/2): 205-222. DOI:10.1007/s10555-019-09792-7.
[24]GILLIES R J, VERDUZCO D, GATENBY R A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work[J]. Nat Rev Cancer, 2012, 12(7): 487-493. DOI:10.1038/nrc3298.
[25]ZHANG M, CONG Q, ZHANG X Y, et al. Pyruvate dehydrogenase kinase 1 contributes to cisplatin resistance of ovarian cancer through EGFR activation[J]. J Cell Physiol, 2019, 234(5): 6361-6370. DOI:10.1002/jcp.27369.
[26]ICARD P, SHULMAN S, FARHAT D, et al. How the Warburg effect supports aggressiveness and drug resistance of cancer cells?[J]. Drug Resist Updat, 2018, 38: 1-11. DOI:10.1016/j.drup.2018.03.001.
[27]ZHANG Q W, ZHANG Y Y, ZHANG P, et al. Hexokinase Ⅱ inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells[J]. Genes Cancer, 2014, 5(3/4): 100-112. DOI:10.18632/genesandcancer.9. 
[28]ZHOU P, CHEN W G, LI X W. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer[J]. Am J Cancer Res, 2015, 5(6): 2056-2063. 

相似文献/References:

[1]蒋娟,易亭伍,张瑜,等.非小细胞肺癌的肿瘤干细胞与非肿瘤干细胞中表皮生长因子受体基因异质性的研究[J].第三军医大学学报,2012,34(20):2039.
 Jiang Juan,Yi Tingwu,Zhang Yu,et al.Genetic heterogeneity of EGFR in cancer and non-cancer stem cells from non-small cell lung cancer[J].J Third Mil Med Univ,2012,34(05):2039.
[2]杨庆羚,刘翩,王斌,等.EGFR-TKIs治疗晚期非小细胞肺癌并发间质性肺炎4例报告并文献复习[J].第三军医大学学报,2012,34(20):2060.
 Yang Qingling,Liu Pian,Wang Bin,et al.Interstitial pneumonia in EGFR-TKIs-treated non-small-cell lung cancer: report of 4 cases and review of the literature[J].J Third Mil Med Univ,2012,34(05):2060.
[3]斯晓燕,张力.西妥昔单抗联合化疗一线治疗非小细胞肺癌20例临床观察[J].第三军医大学学报,2012,34(20):2063.
 Si Xiaoyan,Zhang Li.Outcomes of cetuximab combined with chemotherapy as first line therapy in 20 patients with non-small cell lung cancer[J].J Third Mil Med Univ,2012,34(05):2063.
[4]罗虎,罗丹,宫亮,等.联合CIK细胞与化疗对比单纯化疗治疗中晚期非小细胞肺癌的Meta分析[J].第三军医大学学报,2012,34(20):2119.
[5]张瑞萍,吴继华,黄英武,等.循环肿瘤细胞检测指导老年非小细胞肺癌个体化治疗1例[J].第三军医大学学报,2012,34(22):2248.
[6]闫霞,曹官铭,王导新.吉西他滨联合卡铂治疗老年非小细胞肺癌的临床评价[J].第三军医大学学报,2007,29(19):1913.
 YAN Xia,CAO Guan-min,WANG Dao-xin.Gemcitabine plus carboplatin regimen in treatment of advanced non-small cell lung cancer in aged patients[J].J Third Mil Med Univ,2007,29(05):1913.
[7]闵发胜,陈正堂.人非小细胞肺癌与外周血淋巴细胞表达LRP的相关性研究[J].第三军医大学学报,2007,29(17):1699.
 MIN Fa-sheng,CHEN Zheng-tang.Correlation between expression of lung resistance-related protein in non-small cell lung cancer and that in peripheral blood lymphocytes[J].J Third Mil Med Univ,2007,29(05):1699.
[8]高娟,饶进军,吴少瑜,等.丁酸钠与顺铂联用对非小细胞性肺癌细胞生长的抑制作用[J].第三军医大学学报,2007,29(11):1066.
 GAO Juan,RAO Jin-jun,WU Shao-yu,et al.Combination of sodium butyrate and cisplatin has antiproliferative effects on non-small lung cancer cell line[J].J Third Mil Med Univ,2007,29(05):1066.
[9]郑顺利,杨庆生,马小红.非小细胞肺癌患者纵隔淋巴结和外周血中MUC1基因的检测及意义[J].第三军医大学学报,2006,28(24):2472.
[10]张云嵩,范士志,王东,等.APE1在非小细胞肺癌中的表达特点及其与预后的关系[J].第三军医大学学报,2007,29(09):776.
 ZHANG Yun-song,FAN Shi-zhi,WANG Dong,et al.APE1 expression and its correlation with prognosis in non-small cell lung cancer[J].J Third Mil Med Univ,2007,29(05):776.

更新日期/Last Update: 2020-03-06