[1]栾兆辉,覃语思,代剑华,等.光纤拉曼系统对上皮内瘤变胃黏膜生化结构变化的研究[J].第三军医大学学报,2020,42(05):504-510.
 LUAN Zhaohui,QIN Yusi,DAI Jianhua,et al.Changes of biochemical structure of gastric mucosa with intraepithelial neoplasia by fiber Raman system[J].J Third Mil Med Univ,2020,42(05):504-510.
点击复制

光纤拉曼系统对上皮内瘤变胃黏膜生化结构变化的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
504-510
栏目:
临床医学
出版日期:
2020-03-15

文章信息/Info

Title:
Changes of biochemical structure of gastric mucosa with intraepithelial neoplasia by fiber Raman system
作者:
栾兆辉覃语思代剑华陈瑶吴宏博 冯晓峰彭贵勇
陆军军医大学(第三军医大学)第一附属医院消化内科内镜中心
 
Author(s):
LUAN Zhaohui QIN Yusi DAI Jianhua CHEN Yao WU Hongbo FENG Xiaofeng PENG Guiyong

Endoscopic Center, Department of Gastroenterology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
拉曼光谱上皮内瘤变ESD标本鉴别
Keywords:
Raman spectroscopy intraepithelial neoplasia endoscopic submucosal dissection specimen differentiation
分类号:
R730.23; R730.43; R735.2
文献标志码:
A
摘要:

目的采用光纤拉曼系统观察上皮内瘤变胃黏膜生化结构变化。方法通过光纤拉曼系统对行内镜黏膜下剥离术(endoscopic submucosal dissection,ESD)治疗患者术后标本进行拉曼光谱测量,共收集低级别上皮内瘤变(low-grade intraepithelial neoplasia,LGIN)ESD术后标本6例,高级别上皮内瘤变(high-grade intraepithelial neoplasia,HGIN)ESD术后标本5例,拉曼光谱系统测量后共获得符合标准的光谱图像51例,包括LGIN组织光谱图像16例,HGIN组织光谱图像15例,非病变组织光谱图像20例,进行数据转换及一系列数据预处理,得到LGIN、HGIN和非病变组织的平均拉曼光谱图,分析3组图像图形及拉曼峰归属,并进一步分析上皮内瘤变胃黏膜生化结构变化。结果LGIN、HGIN组织较非病变组织在852 cm-1、891 cm-1、992 cm-1、1 103 cm-1、1 171 cm-1、1 234 cm-1、1 417 cm-1、1 560 cm-1、1 586 cm-1等特征峰发生同向偏移,且偏移程度与瘤变程度正相关;LGIN组于805 cm-1、819 cm-1、1 306 cm-1、1 327 cm-1处,HGIN组于875 cm-1、1 304 cm-1、1 324 cm-1处观察到特征性拉曼峰,提示随着上皮内瘤变的发生和加重,胃黏膜的生化结构、分子表达发生一定程度改变。结论拉曼光谱图可显示瘤变过程中基因结构发生改变,部分核酸碱基、蛋白质高表达,从而判断与识别胃黏膜不同程度上皮内瘤变。

Abstract:

ObjectiveTo observe the biochemical structural changes of gastric mucosa with intraepithelial neoplasia by fiber Raman system. MethodsPostoperative specimens of endoscopic submucosal dissection (ESD)-treated patients were measured to get Raman spectra by fiber Raman spectroscopy system. There were 6 ESD specimens with low-grade intraepithelial neoplasia (LGIN) and 5 with high-grade intraepithelial neoplasia (HGIN).  A total of 51 sets of standard Raman spectral data were obtained by the fiber Raman system, including 16 sets of low-grade intraepithelial neoplasia tissue data, 15 sets of high-grade intraepithelial neoplasia tissue data, and 20 sets of non-lesional tissue data. After data conversion and a series of data preprocessing steps, the average Raman spectrum was obtained. After analysis of 3 sets of image patterns and Raman peak assignment, further analysis in the changes of biochemical structure of gastric mucosa with intraepithelial neoplasia were carried out. ResultsCompared with non-lesional tissues, peaks at 852 cm-1, 891 cm-1, 992 cm-1, 1 103 cm-1, 1 171 cm-1, 1 234 cm-1, 1 417 cm-1, 1 560 cm-1 and 1 586 cm-1 shifted to the same direction, and the magnitudes of shift was positively correlated with the severity of tumor transformation. Characteristic Raman peaks were observed at 805 cm-1, 819 cm-1, 1 306 cm-1 and 1 327 cm-1 in low-grade intraepithelial neoplasia tissues, and 875 cm-1, 1 304 cm-1 and 1 324 cm-1 in high-grade intraepithelial neoplasia tissues, which suggesting that the biochemical structure and molecular expression of gastric mucosa changed with the occurrence and advance of intraepithelial neoplasia. ConclusionRaman spectroscopy indicates that the gene structure changes during tumorigenesis, and some nucleic acid bases and proteins are highly expressed. The above changes can be reflected intraepithelial neoplasia of gastric mucosa. 

参考文献/References:

[1]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492.
[2]OLIVEIRA C, PINHEIRO H, FIGUEIREDO J, et al. Familial gastric cancer: genetic susceptibility, pathology, and implications for management[J]. Lancet Oncol, 2015, 16(2): e60-e70. DOI:10.1016/S1470-2045(14)71016-2.
[3]MCLEAN M H, EL-OMAR E M. Genetics of gastric cancer[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(11): 664-674. DOI:10.1038/nrgastro.2014.143.
[4]CHIU P W. Novel endoscopic therapeutics for early gastric cancer[J]. Clin Gastroenterol Hepatol, 2014, 12(1): 120-125. DOI:10.1016/j.cgh.2013.07.037.
[5]CORREA P. A human model of gastric carcinogenesis[J]. Cancer Res, 1988, 48(13): 3554-3560.
[6]HAMILTON S R, AALTONEN L A. World Health Organization classification of tumours, pathology and genetics of tumours of digestive system[J]. Gastroenterology, 2000,121(5): 1258.DOI:10.1016/S0016-5085(01)70019-4.
[7]DA COSTA L B, TRIGLIA R D E M, FRANA JUNIOR M C, et al. P16(INK) (4a) expression as a potential marker of low-grade cervical intraepithelial neoplasia progression[J]. APMIS, 2015, 123(3): 185-189. DOI:10.1111/apm.12338.
[8]张岚, 宋一民, 高冬冷, 等. 宫颈上皮内病变组织中人乳头状瘤病毒L1壳蛋白与Langerhans细胞和Ki-67表达的相关性分析[J]. 中华病理学杂志, 2018, 47(5): 372-373. DOI:10.3760/cma.j.issn.0529-5807.2018.05.011.
ZHANG L, SONG Y M, GAO D L, et al. Correlation analysis of expression of HPV L1 with Langerhans cell and Ki-67 index in cervical intraepithelial neoplasia[J]. Chin J Pathol, 2018, 47(5): 372-373. DOI:10.3760/cma.j.issn.0529-5807.2018.05.011.
[9]RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.
[10]SHAO X G, PAN J H, WANG Y Q, et al. Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study[J]. Nanomed Nanotechnol Biol Med, 2017, 13(3): 1051-1059. DOI:10.1016/j.nano.2016.12.001.
[11]LIN K, ZHENG W, LIM C M, et al. Real-time In vivo diagnosis of nasopharyngeal carcinoma using rapid fiber-optic Raman spectroscopy[J]. Theranostics, 2017, 7(14): 3517-3526. DOI:10.7150/thno.16359.
[12]LUI H, ZHAO J, MCLEAN D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Res, 2012, 72(10): 2491-2500. DOI:10.1158/0008-5472.can-11-4061.
[13]BARROSO E M, SMITS R W, BAKKER SCHUT T C, et al. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy[J]. Anal Chem, 2015, 87(4): 2419-2426. DOI:10.1021/ac504362y.
[14]PARASKEVAIDI M, ASHTON K M, STRINGFELLOW H F, et al. Raman spectroscopic techniques to detect ovarian cancer biomarkers in blood plasma[J]. Talanta, 2018, 189: 281-288. DOI:10.1016/j.talanta.2018.06.084.
[15]CHEN Y S, ZHANG Y X, PAN F, et al. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons[J]. ACS Nano, 2016, 10(9): 8169-8179. DOI:10.1021/acsnano.6b01441.
[16]DIXON M F. Gastrointestinal epithelial neoplasia: Vienna revisited[J]. Gut, 2002, 51(1): 130-131. DOI:10.1136/gut.51.1.130.
[17]YAMADA H, IKEGAMI M, SHIMODA T, et al. Long-term follow-up study of gastric adenoma/dysplasia[J]. Endoscopy, 2004, 36(5): 390-396. DOI:10.1055/s-2004-814330.
[18]DE VRIES A C, VAN GRIEKEN N C, LOOMAN C W, et al. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands[J]. Gastroenterology, 2008, 134(4): 945-952. DOI:10.1053/j.gastro.2008.01.071.
[19]DINIS-RIBEIRO M, AREIA M, DE VRIES A C, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European society of gastrointestinal endoscopy (ESGE), European Helicobacter study group (EHSG), European society of pathology (ESP), and the sociedade portuguesa de endoscopia digestiva (SPED)[J]. Endoscopy, 2012, 44(1): 74-94. DOI:10.1055/s-0031-1291491.
[20]LAGE J, UEDO N, DINIS-RIBEIRO M, et al. Surveillance of patients with gastric precancerous conditions[J]. Best Pract Res Clin Gastroenterol, 2016, 30(6): 913-922. DOI:10.1016/j.bpg.2016.09.004.
[21]CHOI C W, KANG D H, KIM H W, et al. Endoscopic submucosal dissection as a treatment for gastric adenomatous polyps: predictive factors for early gastric cancer[J]. Scand J Gastroenterol, 2012, 47(10): 1218-1225. DOI:10.3109/00365521.2012.666674.
[22]PARK S Y, JEON S W, JUNG M K, et al. Long-term follow-up study of gastric intraepithelial neoplasias: progression from low-grade dysplasia to invasive carcinoma[J]. Eur J Gastroenterol Hepatol, 2008, 20(10): 966-970. DOI:10.1097/MEG.0b013e3283013d58.
[23]ZOU X P, ZHANG B, ZHANG X Q, et al. Promoter hypermethylation of multiple genes in early gastric adenocarcinoma and precancerous lesions[J]. Hum Pathol, 2009, 40(11): 1534-1542. DOI:10.1016/j.humpath.2009.01.029.
[24]LU X X, YU J L, YING L S, et al. Stepwise cumulation of RUNX3 methylation mediated by Helicobacter pylori infection contributes to gastric carcinoma progression[J]. Cancer, 2012, 118(22): 5507-5517. DOI:10.1002/cncr.27604.
[25]FASSAN M, SIMBOLO M, BRIA E, et al. High-throughput mutation profiling identifies novel molecular dysregulation in high-grade intraepithelial neoplasia and early gastric cancers[J]. Gastric Cancer, 2014, 17(3): 442-449. DOI:10.1007/s10120-013-0315-1.

相似文献/References:

[1]张澍田.食管高级别瘤变的内镜早期诊断和干预[J].第三军医大学学报,2009,31(16):1525.

更新日期/Last Update: 2020-03-06