[1]申戴佳,朱连华,刘玉,等.携载AMD070的靶向超声纳米泡的构建及其抑制乳腺癌细胞生长的效能评估[J].第三军医大学学报,2020,42(05):473-479.
 SHEN Daijia,ZHU Lianhua,LIU Yu,et al.Preparation of targeted nanobubbles carrying AMD070 and its inhibitory effect on growth of breast cancer cells in vitro[J].J Third Mil Med Univ,2020,42(05):473-479.
点击复制

携载AMD070的靶向超声纳米泡的构建及其抑制乳腺癌细胞生长的效能评估(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
473-479
栏目:
基础医学
出版日期:
2020-03-15

文章信息/Info

Title:
Preparation of targeted nanobubbles carrying AMD070 and its inhibitory effect on growth of breast cancer cells in vitro
作者:
申戴佳朱连华刘玉方可敬刘灯郭燕丽
陆军军医大学(第三军医大学)第一附属医院超声科
Author(s):
SHEN Daijia ZHU Lianhua LIU Yu FANG Kejing LIU Deng GUO Yanli

Department of Ultrasonography, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
超声靶向纳米泡 诊疗一体化 CXCR4 乳腺癌
Keywords:
ultrasonic targeted nanobubbles integrated diagnosis and treatment CXCR4 breast cancer
分类号:
R445.1; R737.9; R944.9
文献标志码:
A
摘要:

目的构建携载CXCR4小分子拮抗剂AMD070的诊疗一体化超声靶向纳米泡,观察其在体外与乳腺癌细胞的靶向结合能力,初步探讨靶向纳米泡联合超声靶向纳米微泡破坏(ultrasound targeted nano-microbubble destruction,UTMD)对乳腺癌细胞生长的抑制作用。方法通过碳二亚胺法和机械振荡法制备携载AMD070的靶向纳米泡,检测其物理特性,观察靶向纳米泡与乳腺癌细胞的特异性结合能力,CCK-8法筛选UTMD参数并评估在体外靶向纳米泡联合UTMD对乳腺癌细胞的生长抑制作用。结果携载AMD070的超声靶向纳米泡粒径(481.72±26.17)nm,电位(-7.14±0.31)mV,其中AMD070与脂质纳米泡有效连接,体外结合实验显示靶向纳米泡相较于空白纳米泡对CXCR4阳性乳腺癌细胞有更强的亲和力,靶向纳米泡联合优化的UTMD能明显抑制CXCR4阳性的乳腺癌细胞生长。结论靶向纳米泡能与CXCR4阳性表达的乳腺癌细胞特异性结合,并在优化后UTMD的配合下显著抑制CXCR4阳性乳腺癌细胞的生长。

Abstract:

ObjectiveTo prepare targeted ultrasonic nanobubbles carrying small-molecule CXCR4 antagonist AMD070, which can be used in integrated diagnosis and treatment, and investigate the binding ability to breast cancer cells in vitro, in order to investigate the inhibitory effect of ultrasound targeted nanobubble destruction (UTMD) on the growth of breast cancer cells. MethodsTargeted nanobubbles carrying AMD070 were prepared using the carbodiimide method and mechanical oscillation. Their particle size and zeta potential were assessed. The specific binding ability of targeted nanobubbles to breast cancer cells in vitro was evaluated. CCK-8 assay was used to optimize the parameters of UTMD and evaluate the inhibitory effect of targeted nanobubbles combined with UTMD on growth of breast cancer cells. ResultThe average particle size and zeta potential of ultrasonic targeted nanobubbles carrying AMD070 was 481.72±26.17 nm and -7.14±0.31 mV, respectively. AMD070 was efficiently bound to the nanobubbles. In vitro experiment showed that the targeted nanobubbles displayed stronger affinity to CXCR4 positive breast cancer cells when compared with the blank nanobubbles. When combined with UTMD, targeted nanobubbles exerted a remarkable inhibitory effect on the proliferation in CXCR4 positive breast cancer cells. ConclusionTargeted nanobubbles can specifically bind to CXCR4 positive breast cancer cells, and when combined with optimized UTMD, and the targeted nanobubbles can significantly inhibit the growth of CXCR4 positive breast cancer cells in vitro.

参考文献/References:

[1]ANASTASIADI Z, LIANOS G D, IGNATIADOU E, et al. Breast cancer in young women: an overview[J]. Updates Surg, 2017, 69(3): 313-317. DOI:10.1007/s13304-017-0424-1. 
[2]IFTIKHAR A, HASSAN H, IFTIKHAR N, et al. Investigational monoclonal antibodies in the treatment of multiple myeloma: A systematic review of agents under clinical development[J]. Antibodies (Basel), 2019, 8(2): E34. DOI:10.3390/antib8020034. 
[3]MAO T L, FAN K F, LIU C L. Targeting the CXCR4/CXCL12 axis in treating epithelial ovarian cancer[J]. Gene Ther, 2017, 24(10): 621-629. DOI:10.1038/gt.2017.69. 
[4]XU C, ZHENG L F, LI D C, et al. CXCR4 overexpression is correlated with poor prognosis in colorectal cancer[J]. Life Sci, 2018, 208: 333-340. DOI:10.1016/j.lfs.2018.04.050. 
[5]UCHIDA D, KURIBAYASHI N, KINOUCHI M, et al. Effect of a novel orally bioavailable CXCR4 inhibitor, AMD070, on the metastasis of oral cancer cells[J]. Oncol Rep, 2018, 40(1): 303-308. DOI:10.3892/or.2018.6400. 
[6]熊星宇, 郭燕丽, 范校周, 等. 携载PSMA单克隆抗体载药纳米泡的制备及体内显影的实验研究[J]. 中国超声医学杂志, 2016, 32(5): 467-470.
XIONG X Y, GUO Y L, FAN X Z, et al. Preparation of drug-loadingnanobubble connected with PSMA monoclonal antibody and in vivo imaging: experimental study[J]. Chin J Ultrasound Med, 2016, 32(5): 467-470. 
[7]MA J, XU C S, GAO F, et al. Diagnostic and therapeutic research on ultrasoundmicrobubble/nanobubble contrast agents (Review)[J]. Mol Med Rep, 2015, 12(3): 4022-4028. DOI:10.3892/mmr.2015.3941. 
[8]洪少馥,王冬晓,杨莉,等. 超声辐照联合双配体载药纳米粒对人乳腺癌耐紫杉醇细胞株细胞毒性的效果评价[J]. 中华超声影像学杂志, 2015,24(5): 435-439. DOI: 10.3760/cma.j.issn.1004-4477.2015.05.020.
HONG S F, WANG D X, YANG L, et al. The cytotoxity of paclitaxel-nanoparticles with dual ligands combined with ultrasound irradiation on drug resistant breast cancer cells[J]. Chin J Ultrasonogr, 2015,24(5): 435-439. DOI: 10.3760/cma.j.issn.1004-4477.2015.05.020.
[9]THALGOTT M, HORN T, HECK M M, et al. Long-term results of a phase Ⅱ study with neoadjuvant docetaxel chemotherapy and complete androgen blockade in locally advanced and high-risk prostate cancer[J]. J Hematol Oncol, 2014, 7: 20. DOI:10.1186/1756-8722-7-20. 
[10]FAN X Z, WANG L F, GUO Y L, et al. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targetednanobubble destruction[J]. Int J Nanomed, 2016, 11: 3585-3596. DOI:10.2147/IJN.S111808. 
[11]LIN L Z, FAN Y, GAO F, et al. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy[J]. Theranostics, 2018, 8(7): 1923-1939. DOI:10.7150/thno.22834. 
[12]WANG L F, ZHANG M, TAN K B, et al. Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation[J]. PLoS ONE, 2014, 9(5): e96586. DOI:10.1371/journal.pone.0096586. 
[13]ZHU L H, GUO Y L, WANG L F, et al. Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs[J]. J Nanobiotechnology, 2017, 15(1): 63. DOI:10.1186/s12951-017-0307-0. 
[14]ZHONG J, LI J X, WEI J X, et al.Plumbagin restrains hepatocellular carcinoma angiogenesis by stromal cell-derived factor (SDF-1)/CXCR4-CXCR7 axis[J]. Med Sci Monit, 2019, 25: 6110-6119. DOI:10.12659/MSM.915782. 
[15]ULLAH T R. The role of CXCR4 in multiple myeloma: Cells’ journey from bone marrow to beyond[J]. J Bone Oncol, 2019, 17: 100253. DOI:10.1016/j.jbo.2019.100253. 
[16]NYUNT M M, BECKER S, MACFARLAND R T, et al. Pharmacokinetic effect of AMD070, an Oral CXCR4 antagonist, on CYP3A4 and CYP2D6 substrates midazolam and dextromethorphan in healthy volunteers[J]. J Acquir Immune Defic Syndr, 2008, 47(5): 559-565. DOI:10.1097/QAI.0b013e3181627566. 
[17]SUEN W L, JIANG J, WONG H S, et al. Examination of effects of low-frequency ultrasound on scleral permeability and collagen network[J]. Ultrasound Med Biol, 2016, 42(11): 2650-2661. DOI:10.1016/j.ultrasmedbio.2016.07.013. 
[18]MISRA A C, LUKER K E, DURMAZ H, et al. CXCR4-targetednanocarriers for triple negative breast cancers[J]. Biomacromolecules, 2015, 16(8): 2412-2417. DOI:10.1021/acs.biomac.5b00653. 
[19]ZHOU K X, XIE L H, PENG X, et al. CXCR4 antagonist AMD3100 enhances the response of MDA-MB-231 triple-negative breast cancer cells to ionizing radiation[J]. Cancer Lett, 2018, 418: 196-203. DOI:10.1016/j.canlet.2018.01.009. 
[20]THOMAS E, MENON J U, OWEN J, et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy[J]. Theranostics, 2019, 9(19): 5595-5609. DOI: 10.7150/thno.34669.

更新日期/Last Update: 2020-03-06