[1]向怡,蒋理,覃彬,等.帕金森病患者丘脑底核脑深部电刺激术中同期植入双侧电极精度及治疗效果的研究[J].第三军医大学学报,2020,42(05):517-522.
 XIANG Yi,JIANG Li,QIN Bin,et al.Precision of bilateral electrode implantation and treatment outcome in Parkinson’s disease after subthalamic nucleus deep brain stimulation[J].J Third Mil Med Univ,2020,42(05):517-522.
点击复制

帕金森病患者丘脑底核脑深部电刺激术中同期植入双侧电极精度及治疗效果的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
517-522
栏目:
临床医学
出版日期:
2020-03-15

文章信息/Info

Title:
Precision of bilateral electrode implantation and treatment outcome in Parkinson’s disease after subthalamic nucleus deep brain stimulation
作者:
向怡蒋理覃彬王宽廖忆思石全红谢延风詹彦
重庆医科大学附属第一医院神经外科
Author(s):
XIANG Yi JIANG Li QIN Bin WANG Kuan LIAO Yisi SHI Quanhong XIE Yanfeng ZHAN Yan
Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
 
关键词:
帕金森病丘脑底核脑深部电刺激术同期植入治疗效果
Keywords:
Parkinson&rsquos disease subthalamic nucleus deep brain stimulation simultaneous implantation treatment outcome
分类号:
R454.1; R651.1; R742.5
文献标志码:
A
摘要:

目的研究在帕金森病患者丘脑底核脑深部电刺激术(subthalamic nucleus deep brain stimulation,STN-DBS)中,同期植入双侧电极,其先后两侧的精确度是否有明显差异,并分析术后疗效。方法收集2016-2018年本院29例接受双侧STN-DBS术的帕金森病患者,所有患者于术中植入双侧电极后复查头部CT,并与术前3T-MRI图像(手术计划靶点)融合;测量并计算植入电极与计划靶点的误差距离。术前及术后6个月采用统一帕金森病评分量表中的第三部分(the Unified Parkinson’s Disease Rating Scale Ⅲ,UPDRSⅢ)对患者的症状改善情况进行评估。采用Pearson相关分析研究年龄、性别、起病年龄及病程长短与改善率及偏差之间的相关关系。结果最终共纳入27例患者,54侧电极均成功植入,患者年龄、性别、起病年龄及病程长短与改善率及偏差均无明显关系(P>0.05)。第1侧植入电极与第2侧植入电极之间的平均偏差比较差异无统计学意义(t=1.437, P>0.05)。所有患者的症状得到明显改善,术后6个月药物开期,全身症状的改善率为(78.10±10.25)%,等效剂量左旋多巴平均减少45.07%。第1侧对应肢体症状改善率为(83.15±9.16)%,第2侧为(83.52±11.21)%,两侧肢体症状的改善情况差异无统计学意义(P>0.05)。结论帕金森病STN-DBS中同期植入双侧电极,其先后两侧电极之间精确度并无较大差异,且可以达到较好的临床效果。

Abstract:

ObjectiveTo investigate whether there is a significant difference in the accuracy of the two-sided electrode implanted during the same period in Parkinson’s disease (PD) with subthalamic nucleus deep brain stimulation (STN-DBS), and whether the accuracy affects the bilateral postoperative effects. MethodsTwenty-nine PD patients admitted in our department from January 2016 to December 2018, who underwent bilateral STN-DBS surgery were re-examined with CT scanning on the head after bilateral electrodes were implanted during the operation. The results were merged with preoperative 3T-MRI images (with planned targets). The implanted electrodes were measured and calculated for error distance from the planned targets. Unified Parkinson’s Disease Rating Scale Ⅲ (UPDRSⅢ) was used to evaluate the improvement of the symptoms before and in 6 months after operation. Pearson correlation analysis was used to study the correlation among age, gender, onset age and course of disease with improvement rate and deviation. ResultsFinally, 27 patients were enrolled, and 54 electrodes were implanted successfully. There were no significant differences in the age, gender, onset age and course of disease and the improvement rate and deviation among these patients (P>0.05). No obvious difference was seen in the mean deviation between the first implanted electrodes and second implanted electrodes (t=1.437, P>0.05). The symptoms of all patients were obviously improved. In 6 months after surgery, the average improvement rate of systemic symptoms was (78.10±10.25)% with drug on, and the average decrease of the equivalent dose of levodopa was 45.07%. The improvement rate was (83.15± 9.16)% for the first side, and (83.52±11.21)% for the second side. There was no significant difference in the improvement of limb symptoms between the 2 sides (P>0.05). ConclusionThe accuracy of simultaneous implantation of bilateral electrodes in STN-DBS is not significantly different from that of the electrodes implanted sequentially, while still achieving good clinical outcomes.

参考文献/References:

[1]YU H, NEIMAT J S. The treatment of movement disorders by deep brain stimulation [J]. Neurotherapeutics, 2008,5(1):26-36. DOI: 10.1016/j.nurt.2007.10.072.
[2]ODEKERKEN V J, VAN LAAR T, STAAL M J, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial[J]. Lancet Neurol, 2013, 12(1): 37-44. DOI:10.1016/S1474-4422(12)70264-8.
[3]冼文彪, 裴中, 周旭毓, 等. 双侧丘脑底核脑深部电刺激术治疗帕金森病有效性和安全性的meta分析[J]. 中国神经精神疾病杂志, 2009,35(5):289-294. DOI:10.3969/j.issn.1002-0152.2009.05.009.
XIAN W B, PEI Z, ZHOU X Y, et al. Efficacy and safety of bilateral subthalamic nucleus deep brain stimulation for treating parkinson disease: a Meta-analysis[J]. Chin J Nerv Ment Dis, 2009, 35(5): 289-294. DOI:10.3969/j.issn.1002-0152.2009.05.009.
[4]GURIDI J, RODRGUEZ-OROZ M C, CLAVERO P, et al. Critical review of the subthalamic stimulation in Parkinson’s disease[J]. Neurocirugia (Astur), 2009, 20(6): 521-532. 
[5]ELIAS W J, FU K M, FRYSINGER R C. Cortical and subcortical brain shift during stereotactic procedures[J]. J Neuro-surg, 2007, 107(5): 983-988. DOI:10.3171/JNS-07/11/0983.
[6]MIYAGI Y, SHIMA F, SASAKI T. Brain shift: an error factor during implantation of deep brain stimulation electrodes[J]. J Neurosurg, 2007, 107(5): 989-997. DOI:10.3171/JNS-07/11/0989.
[7]IVAN M E, YARLAGADDA J, SAXENA A P, et al. Brain shift during bur hole-based procedures using interventional MRI[J]. J Neurosurg, 2014, 121(1): 149-160. DOI:10.3171/2014.3.JNS121312.
[8]SLOTTY P J, KAMP M A, WILLE C, et al. The impact of brain shift in deep brain stimulation surgery: observation and obviation[J]. Acta Neurochir (Wien), 2012, 154(11): 2063-2068.  DOI:10.1007/s00701-012-1468-y. 
[9]AZMI H,  MACHADO A, DEOGAONKAR M, et al. Intracranial air correlates with preoperative cerebral atrophy and stereotactic error during bilateral STN DBS Surgery for Parkinson’s disease[J].  Stereotact Funct Neurosurg, 2011, 89(4): 246-252. DOI:10.1159/000327916.
[10]刘焕光, 刘德峰, 王慧敏, 等. 国产脑深部电刺激器治疗帕金森病的长期疗效观察[J]. 中华神经外科杂志, 2017, 33(11): 1133-1136. DOI:10.3760/cma.j.issn.1001-2346.2017.11.012. 
LIU H G, LIU D F, WANG H M, et al. Deep brain stimulation with a PINS device in Parkinson’s disease: long-term follow-up[J]. Chin J Neurosurg, 2017, 33(11): 1133-1136. DOI:10.3760/cma.j.issn.1001-2346.2017.11.012. 
[11]BENABID A L, KOUDSIE A, BENAZZOUZ A, et al. Imaging of subthalamic nucleus and ventralis intermedius of the thalamus[J]. Mov Disord, 2002, 17(Suppl 3): S123-S129. DOI:10.1002/mds.10153.
[12]胡小吾, 周晓平, 姜秀峰, 等. 帕金森病患者丘脑底核电极植入术中位置判断和调整[J]. 临床神经外科杂志, 2008, 5(3): 113-116. DOI:10.3969/j.issn.1672-7770.2008.03.001. 
HU X W, ZHOU X P, JIANG X F, et al. Intraoperative verification and adjustment of subthalamic nucleus electrode placement in deep brain stimulation for Parkinson’s disease[J]. J Clin Neurosurg, 2008, 5(3): 113-116. DOI:10.3969/j.issn.1672-7770.2008.03.001.
[13]MONTGOMERY E B Jr. Microelectrode targeting of the subthalamic nucleus for deep brain stimulation surgery[J]. Mov Disord, 2012, 27(11): 1387-1391. DOI:10.1002/mds.25000.
[14]BENAZZOUZ A, BREIT S, KOUDSIE A, et al. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease[J]. Mov Disord, 2002, 17(Suppl 3): S145-S149. DOI:10.1002/mds.10156. 
[15]CHEN S D, GAO G D, FENG T, et al. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson’s disease[J]. Transl Neurodegener, 2018, 7: 11. DOI:10.1186/s40035-018-0116-x.
[16]SASAKI T, AGARI T, KUWAHARA K, et al. Efficacy of dural sealant system for preventing brain shift and improving accuracy in deep brain stimulation surgery[J]. Neurol Med Chir (Tokyo), 2018, 58(5): 199-205. DOI:10.2176/nmc.oa.2017-0242.
[17]ONDO W G, BRONTE-STEWART H, DBS STUDY GROUP. The North American survey of placement and adjustment strategies for deep brain stimulation[J]. Stereotact Funct Neurosurg, 2005, 83(4): 142-147. DOI:10.1159/000088654. 
[18]PEZESHKIAN P, DESALLES A A, GORGULHO A, et al. Accuracy of frame-based stereotactic magnetic resonance imaging vs frame-based stereotactic head computed tomography fused with recent magnetic resonance imaging for postimplantation deep brain Stimulator lead localization[J]. Neurosurgery, 2011, 69(6): 1299-1306. DOI:10.1227/NEU.0b013e31822b7069. 
[19]SHAHLAIE K, LARSON P S, STARR P A. Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment[J]. Neurosurgery, 2011, 68(1 Suppl Operative): 114-124; discussion 124. DOI:10.1227/NEU.0b013e31820781bc.
[20]KREMER N I, OTERDOOM D L M, VAN LAAR P J, et al. Accuracy of intraoperative computed tomography in deep brain stimulation-A prospective noninferiority study[J]. Neuromodulation, 2019, 22(4): 472-477. DOI:10.1111/ner.12918. 
[21]KOCHANSKI R B, KEROLUS M G, PAL G, et al. Use of intraoperative CT to predict the accuracy of microelectrode recording during deep brain stimulation surgery. A proof of concept study[J]. Clin Neurol Neurosurg, 2016, 150: 164-168. DOI:10.1016/j.clineuro.2016.09.014.
[22]BOT M, VAN DEN MUNCKHOF P, BAKAY R, et al. Accuracy of intraoperative computed tomography during deep brain stimulation procedures: comparison with postoperative magnetic resonance imaging[J]. Stereotact Funct Neurosurg, 2017, 95(3): 183-188. DOI:10.1159/000475672.
[23]GEEVARGHESE R, O’GORMAN TUURA R, LUMSDEN D E, et al. Registration accuracy of CT/MRI Fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review[J]. Stereotact Funct Neurosurg, 2016, 94(3): 159-163. DOI:10.1159/000446609.
[24]HAMID N A, MITCHELL R D, MOCROFT P, et al. Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement[J]. J Neurol Neurosurg Psychiatry, 2005, 76(3): 409-414. DOI:10.1136/jnnp.2003.032029.
[25]PETERSEN E A, HOLL E M, MARTINEZ-TORRES I, et al. Minimizing brain shift in stereotactic functional neurosurgery[J]. Neurosurgery, 2010, 67(3 Suppl Operative):ons213-221, discussion ons221. DOI: 10.1227/01.NEU.0000380991.23444.08.
[26]MATIAS C M, FRIZON L A, ASFAHAN F, et al. Brain shift and pneumocephalus assessment during frame-based deep brain stimulation implantation with intraoperative magnetic resonance imaging[J]. Oper Neurosurg (Hagerstown), 2018,14(6):668-674. DOI: 10.1093/ons/opx170.

更新日期/Last Update: 2020-03-06