[1]刘洋,郎和东,惠锁成,等.紫檀芪改善睡眠限制小鼠运动耐力的作用及其机制[J].第三军医大学学报,2020,42(03):259-266.
 LIU Yang,LANG Hedong,HUI Suocheng,et al.Pterostilbene improves exercise intolerance induced by sleep restriction in mice by activating AMPK/SIRT1 signaling and promoting mitochondrial biosynthesis [J].J Third Mil Med Univ,2020,42(03):259-266.
点击复制

紫檀芪改善睡眠限制小鼠运动耐力的作用及其机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第03期
页码:
259-266
栏目:
基础医学
出版日期:
2020-02-15

文章信息/Info

Title:
Pterostilbene improves exercise intolerance induced by sleep restriction in mice by activating AMPK/SIRT1 signaling and promoting mitochondrial biosynthesis 
作者:
刘洋郎和东惠锁成陈卡糜漫天
陆军军医大学( 第三军医大学) 军事预防医学系营养与食品安全研究中心,重庆市医学营养研究中心,重庆市营养与食品安全重点实验室
Author(s):
LIU Yang LANG Hedong HUI Suocheng CHEN Ka MI Mantian

Center of Nutrition and Food Safety, Chongqing Center of Medical Nutrition, Chongqing Key Laboratory of Nutrition and Food Safety, Faculty of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
紫檀芪睡眠限制运动耐力线粒体生物合成
Keywords:
sleep restriction exercise tolerance mitochondrial biogenesis
分类号:
R256.23; R285.5; R872.7
文献标志码:
A
摘要:

目的探讨紫檀芪(pterostilbene,PTE)对睡眠限制(sleep restriction,SR)小鼠运动耐力的改善作用及机制。方法30只C57BL/6J雄性小鼠,分为对照组(CON)、睡眠限制组(SR)和紫檀芪干预睡眠限制组(SR+PTE)。采用睡眠剥夺仪建立SR模型,限制每日睡眠时间为4 h、持续5 d,PTE于每日8:00灌胃[100 mg/(kg·d)]。检测小鼠体质量;于观察终点进行负重力竭游泳实验,检测血清运动性疲劳生化指标;HE染色观察骨骼肌组织病理学变化。分别采用实时定量PCR和Western blot检测骨骼肌线粒体DNA(mtDNA)含量,线粒体生物合成相关基因的mRNA、蛋白表达,以及腺苷酸活化蛋白激酶[adenosine 5’-monophosphate (AMP)-activated protein kinase,AMPK]和沉默信息调节因子1(silent mating-type information regulation 2 homolog 1,SIRT1)的蛋白表达。结果与CON组相比,SR组和SR+PTE组小鼠体质量均显著下降(P<0.05),但SR组下降幅度更大(P<0.05);SR+PTE组小鼠较SR组力竭游泳时间显著延长(P<0.05),血清LDH、CK水平显著下降(P<0.05);HE染色结果差异无统计学意义。SR+PTE组小鼠骨骼肌组织mtDNA含量及PGC1α、NRF1、ERRα和TFAM等线粒体生物合成相关基因的表达较SR组明显升高(P<0.05)。Western blot检测结果显示:SR+PTE组小鼠p-AMPK和SIRT1表达较SR组明显升高(P<0.05),AMPK表达差异无统计学意义。结论紫檀芪可改善睡眠限制小鼠的运动耐力,其机制可能通过激活AMPK/SIRT1信号通路提高线粒体生物合成能力。

Abstract:

ObjectiveTo investigate the effect of pterostilbene (PTE) on exercise intolerance induced by sleep restriction (SR) in mice and explore the underlying mechanism. MethodsThirty male C57BL/6J mice were randomized into control group, SR group and SR with PTE treatment (SR+PTE) group. The mice in the latter 2 groups were kept awake using a sleep deprivation apparatus with their daily sleep time limited to 4 h for 5 consecutive days. In SR+PTE group, the mice received PTE treatment by gavage at a daily dose of 100 mg/kg (administered at 08:00 am). After the 5-day treatment, body weight changes of the mice were recorded, and a weight-loaded forced swimming test was performed; blood samples were collected for detecting serum levels of biochemical indicators of exercise fatigue. HE staining was used to observe the pathological changes of the skeletal muscle tissue. The mitochondrial DNA (mtDNA) content and the expressions of AMPK, SIRT1 and mitochondrial biogenesis-related genes were determined by real-time PCR and Western blotting. ResultsCompared with those in the control group, the mice in both SR and SR+PTE groups showed significant weight loss after the treatment (P<0.05), and the decrease was more obvious in SR group (P<0.05). Compared with those in SR group, the mice in SR+PTE group had significantly prolonged exhaustive swimming time and significantly lowered serum levels of LDH and CK (P<0.05). No significant differences were found in skeletal muscle pathologies among the groups. The mtDNA content and expression levels of mitochondrial biosynthesis-related genes including PGC1α, NRF1, ERRα and TFAM were significantly higher in SR+PTE group than in SR group (P<0.05). Western blotting showed that the expression levels of p-AMPK and SIRT1 were significantly higher in SR+PTE group than in SR group (P<0.05), while that of  AMPK    were comparable between the 2 groups. ConclusionPTE can improve exercise intolerance in mice exposed to SR possibly by activating AMPK/SIRT1 signaling pathway to enhance mitochondrial biogenesis.

参考文献/References:

[1]OLIVER S J, COSTA R J, LAING S J, et al. One night of sleep deprivation decreases treadmill endurance performance[J]. Eur J Appl Physiol, 2009, 107(2): 155-161. DOI: 10.1007/s00421-009-1103-9.
[2]GRANDOU C, WALLACE L, FULLAGAR H H K, et al. The effects of sleep loss on military physical performance[J]. Sports Med, 2019, 49(8): 1159-1172. DOI: 10.1007/s40279-019-01123-8. 
[3]KAPETANOVIC I M, MUZZIO M, HUANG Z H, et al. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats[J]. Cancer Chemother Pharmacol, 2011, 68(3): 593-601. DOI: 10.1007/s00280-010-1525-4.
[4]RICHE D M, MCEWEN C L, RICHE K D, et al. Analysis of safety from a human clinical trial with pterostilbene[J]. J Toxicol, 2013, 2013: 1-5. DOI: 10.1155/2013/463595. 
[5]LAGOUGE M, ARGMANN C, GERHART-HINES Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha[J]. Cell, 2006, 127(6): 1109-1122. DOI: 10.1016/j.cell.2006.11.013. 
[6]MEI H L, XIANG Y, MEI H, et al. Pterostilbene inhibits nutrient metabolism and induces apoptosis through AMPK activation in multiple myeloma cells[J]. Int J Mol Med, 2018, 42(5): 2676-2688. DOI: 10.3892/ijmm.2018.3857.
[7]CHENG Y D, DI S Y, FAN C X, et al. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury[J]. Apoptosis, 2016, 21(8): 905-916. DOI: 10.1007/s10495-016-1258-x. 
[8]DUAN F F, GUO Y, LI J W, et al. Antifatigue effect of luteolin-6-C-neohesperidoside on oxidative stress injury induced by forced swimming of rats through modulation of Nrf2/ARE signaling pathways[J]. Oxid Med Cell Longev, 2017, 2017: 3159358. DOI: 10.1155/2017/3159358. 
[9]CHOU H W, TZENG W C, CHOU Y C, et al. Stress, sleep and depressive symptoms in active duty military personnel[J]. Am J Med Sci, 2016, 352(2): 146-153. DOI: 10.1016/j.amjms.2016.05.013. 
[10]李晨, 刘康, 陈涛. 急性睡眠剥夺时程对青年男性军人脑认知功能的影响[J]. 中国健康心理学杂志, 2017, 25(2): 195-199. DOI: 10.13342/j.cnki.cjhp.2017.02.011.
LI C, LIU K, CHEN T. Effects of acute sleep deprivation on brain cognitive function in young male military volunteer[J]. China J Heal Psychol, 2017, 25(2): 195-199. DOI: 10.13342/j.cnki.cjhp.2017.02.011. 
[11]VENANCIO D P, SUCHECKI D. Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines[J]. Brain Behav Immun, 2015, 47: 109-117. DOI: 10.1016/j.bbi.2014.12.002. 
[12]ABBASZADEH H, KEIKHAEI B, MOTTAGHI S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds[J]. Phytother Res, 2019, 33(8): 2002-2014. DOI: 10.1002/ptr.6403. 
[13]ALIM A, LI T, NISAR T, et al. Antioxidant, antimicrobial, and antiproliferative activity-based comparative study of peel and flesh polyphenols from Actinidia chinensis[J]. Food Nutr Res, 2019, 26; 63. DOI: 10.29219/fnr.v63.1577. eCollection 2019. 
[14]BOWTELL J, KELLY V. Fruit-derived polyphenol supplementation for athlete recovery and performance[J]. Sports Med, 2019, 49(Suppl 1): 3-23. DOI: 10.1007/s40279-018-0998-x. 
[15]CHATTERJEE K, ALSHARIF D, MAZZA C, et al. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells[J]. Nutrients, 2018, 10(2): E243. DOI: 10.3390/nu10020243. 
[16]NAGAO K, JINNOUCHI T, KAI S, et al. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats[J]. J Nutr Biochem, 2017, 43: 151-155. DOI: 10.1016/j.jnutbio.2017.02.009. 
[17]佘美华, 蒋文艳, 杨升华, 等. 新型褪黑素受体激动剂Neu-P11改善慢性睡眠限制大鼠胰岛素敏感性[J]. 中国药理学通报, 2013,29(11): 1506-1506. DOI: 10.3969 /j.issn.1001-1978.2013.11.008.
SHE M H, JIANG W Y, YANG S H ,et al.Neu-P11, a novel melatonin receptor agonist, improves insulin sensitivity in chronic sleep restricted rats[J]. Chin Pharmacol Bull, 2013, 29(11): 1506-1506. DOI: 10.3969 /j.issn.1001-1978.2013.11.008. 
[18]温朝玲, 刘春红, 孙雯雯, 等. 黑果枸杞花色苷对部分睡眠剥夺大鼠心肌损伤的保护作用[J]. 皖南医学院学报, 2018, 37(6): 523-526.
WEN C L, LIU C H, SUN W W, et al. Protective effect of Lycium ruthenicum Murray anthocyanin extracts on myocardial injury in partial sleep deprived rats[J]. Acta Acad Med Wannan, 2018, 37(6): 523-526.
[19]ZHAO X N, LIANG J L, CHEN H B, et al. Anti-fatigue and antioxidant activity of the polysaccharides isolated from millettiae speciosae champ. Leguminosae[J]. Nutrients, 2015, 7(10): 8657-8669. DOI: 10.3390/nu7105422. 
[20]LIU R, WU L, DU Q, et al. Small molecule oligopeptides isolated from walnut (Juglans regia L.) and their anti-fatigue effects in mice[J]. Molecules, 2018, 24(1): E45. DOI: 10.3390/molecules24010045. 
[21]ANAND T, PHANI KUMAR G, PANDAREESH M D, et al. Effect of bacoside extract from Bacopa monniera on physical fatigue induced by forced swimming[J]. Phytother Res, 2012, 26(4): 587-593. DOI: 10.1002/ptr.3611. 
[22]BOOTH F W, RUEGSEGGER G N, TOEDEBUSCH R G, et al. Endurance exercise and the regulation of skeletal muscle metabolism[J]. Prog Mol Biol Transl Sci, 2015, 135: 129-151. DOI: 10.1016/bs.pmbts.2015.07.016. 
[23]DAVIS J M, MURPHY E A, CARMICHAEL M D, et al. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296(4): R1071-R1077. DOI: 10.1152/ajpregu.90925.2008. 
[24]SCARPULLA R C, VEGA R B, KELLY D P. Transcriptional integration of mitochondrial biogenesis[J]. Trends Endocrinol Metab, 2012, 23(9): 459-466. DOI: 10.1016/j.tem.2012.06.006.
[25]MARCINKO K, STEINBERG G R. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise[J]. Exp Physiol, 2014, 99(12): 1581-1585. DOI: 10.1113/expphysiol.2014.082255. 
[26]CANT C, AUWERX J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure[J]. Curr Opin Lipidol, 2009, 20(2): 98-105. DOI: 10.1097/mol.0b013e328328d0a4. 
[27]WEI W, LI Z P, ZHU T, et al. Anti-fatigue effects of the unique polysaccharide marker of Dendrobium officinale on BALB/c mice[J]. Molecules, 2017, 22(1): E155. DOI: 10.3390/molecules22010155. 
[28]CHEN J H, WANG X F, CAI Y Q, et al. Bioactivity-guided fractionation of physical fatigue-attenuating components from Rubus parvifolius L[J]. Molecules, 2013, 18(9): 11624-11638. DOI: 10.3390/molecules180911624.

更新日期/Last Update: 2020-02-06