[1]甘志新,贺斌峰,徐剑铖,等.基于两种因子同步检测方法探讨TNF-α及IL-6在预测ARDS发生中的作用[J].第三军医大学学报,2020,42(05):493-498.
 GAN Zhixin,HE Binfeng,XU Jiancheng,et al.Role of plasma TNF-α and IL-6 levels in prediction of acute respiratory distress syndrome based on their synchronous detection[J].J Third Mil Med Univ,2020,42(05):493-498.
点击复制

基于两种因子同步检测方法探讨TNF-α及IL-6在预测ARDS发生中的作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
493-498
栏目:
临床医学
出版日期:
2020-03-15

文章信息/Info

Title:
Role of plasma TNF-α and IL-6 levels in prediction of acute respiratory distress syndrome based on their synchronous detection
作者:
甘志新贺斌峰徐剑铖王关嵩徐智钱航陈华萍王丹黄朝旺李春燕许发琼胡明冬
陆军军医大学(第三军医大学)第二附属医院:呼吸与危重症医学中心1,老年与特勤医学科2
 
Author(s):
GAN Zhixin HE Binfeng XU Jiancheng WANG Guansong XU Zhi QIAN Hang CHEN Huaping WANG Dan HUANG Chaowang LI Chunyan XU Faqiong HU Mingdong

Center of Respiratory and Critical Care Medicine, 2Department of Gerontology and Secret Service Medicine, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
ARDSTNF-&alphaIL-6炎症
Keywords:
acute respiratory distress syndrome TNF-&alpha IL-6 inflammation
分类号:
R446.11; R446.62; R563.8
文献标志码:
A
摘要:

目的探讨高危患者入院时血浆TNF-α及IL-6水平在预测急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)发生中的作用。方法纳入2018年6月至2019年4月本院呼吸与危重症医学中心ICU的高危患者30例,其中13例发展成为ARDS(ARDS组),其余17例为高危组。收集入组患者的临床资料及刚入院时的血浆标本。此外,收集18例正常人血浆标本作为对照(对照组)。应用流式细胞仪,用两种因子同步检测试剂盒对样本中的TNF-α、IL-6进行定量检测。结果ARDS组患者血浆TNF-α和IL-6水平明显高于高危组及对照组,高危组患者血浆TNF-α和IL-6水平明显高于对照组(P<0.05)。血浆TNF-α水平与高危患者进展成为ARDS有密切关联;此外,ARDS组患者APACHE-Ⅱ评分、C反应蛋白、降钙素原、直接胆红素及乳酸水平明显高于高危组患者,而氧合指数、白蛋白水平明显低于高危组患者(P<0.05)。入组患者中死亡人数与存活人数均为15人,两组间TNF-α与IL-6水平未见统计学差异(P>0.05)。死亡组APACHE-Ⅱ评分、C反应蛋白、尿素、尿酸水平明显高于存活组,而血浆总蛋白、白蛋白及氧合指数明显低于存活组(P<0.05)。结论入院时血浆中TNF-α水平与高危患者进展成为ARDS有密切关联,可作为预测ARDS发生的标志物。

Abstract:

ObjectiveTo investigate the role of plasma TNF-α and IL-6 levels in prediction of occurrence of acute respiratory distress syndrome (ARDS) in high-risk patients. MethodsA total of 30 patients who were at high risk for ARDS and enrolled in ICU of our Center of Respiratory and Critical Care Medicine from June 2018 to April 2019 were subjected in this study. Among them, 13 developed into ARDS (ARDS group), and the other 17 served as high risk group. Their clinical data and plasma samples at admission were collected. Plasma samples from 18 heath volunteers were also harvested. The soluble proteins, TNF-α and IL-6, in the samples were quantitatively detected by flow cytometry. ResultsThe plasma levels of TNF-α and IL-6 were significantly higher in the ARDS patients than the high risk group and health control, while those in the high risk group also higher than those in the health control group (P<0.05). The TNF-α level was closely associated with the progression of ARDS in high-risk patients. Furthermore, the patients of the ARDS group had significantly higher APACHE-Ⅱ score and higher levels of C-reactive protein, procalcitonin, direct bilirubin and lactic acid, while obviously lower oxygenation index and albumin level when compared with the high risk group (P<0.05). Finally, from the 30 high risk patients, 15 died and 15 survived, and there were no notable differences in the TNF-α and IL-6 levels between the dead and survival (P>0.05). But the dead still had remarkably higher APACHE-Ⅱ score and levels of C-reactive protein, urea and uric acid, while obviously lower albumin, total plasma protein and oxygenation index than the survival (P<0.05).  ConclusionThe plasma TNF-α level at admission is closely associated with the progression of ARDS in high-risk patients, and might be regarded as a marker to predict its occurrence.

参考文献/References:

[1]BELLANI G, LAFFEY J G, PHAM T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800. DOI:10.1001/jama.2016.0291.
[2]VILLAR J, KACMAREK R M, GURIN C. Clinical trials in patients with the acute respiratory distress syndrome: burn after reading[J]. Intensive Care Med, 2014, 40(6): 900-902. DOI:10.1007/s00134-014-3288-6.
[3]ARDS DEFINITION TASK FORCE, RANIERI V M, RUBENFELD G D, et al. Acute respiratory distress syndrome: the Berlin Definition[J]. JAMA, 2012, 307(23): 2526-2533. DOI:10.1001/jama.2012.5669.
[4]ROTEN R, MARKERT M, FEIHL F, et al. Plasma levels of tumor necrosis factor in the adult respiratory distress syndrome[J]. Am Rev Respir Dis, 1991, 143(3): 590-592. DOI:10.1164/ajrccm/143.3.590.
[5]PARSONS P E, EISNER M D, THOMPSON B T, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury[J]. Crit Care Med, 2005, 33(1): 1-6; discussion 230-232. DOI:10.1097/01.ccm.0000149854.61192.dc.
[6]CALFEE C S, JANZ D R, BERNARD G R, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies[J]. Chest, 2015, 147(6): 1539-1548. DOI:10.1378/chest.14-2454.
[7]DOLINAY T, KIM Y S, HOWRYLAK J, et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury[J]. Am J Respir Crit Care Med, 2012, 185(11): 1225-1234. DOI:10.1164/rccm.201201-0003OC.
[8]DING Q, LIU G Q, ZENG Y Y, et al. Role of IL-17 in LPS-induced acute lung injury: an in vivo study[J]. Oncotarget, 2017, 8(55): 93704-93711. DOI:10.18632/oncotarget.21474.
[9]LYNN H, SUN X G, CASANOVA N, et al. Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality[J]. Antioxid Redox Signal, 2019, 31(14): 1027-1052. DOI:10.1089/ars.2018.7701.
[10]GONG M N, THOMPSON B T. Acute respiratory distress syndrome: shifting the emphasis from treatment to prevention[J]. Curr Opin Crit Care, 2016, 22(1): 21-37. DOI:10.1097/MCC.0000000000000275.
[11]NIEMAN G F, GATTO L A, BATES J H T, et al. Mechanical ventilation as a therapeutic tool to reduce ARDS incidence[J]. Chest, 2015, 148(6): 1396-1404. DOI:10.1378/chest.15-0990.
[12]BARADARAN RAHIMI V, RAKHSHANDEH H, RAUCCI F, et al. Anti-inflammatory and anti-oxidant activity of Portulaca oleracea extract on LPS-induced rat lung injury[J]. Molecules, 2019, 24(1): E139. DOI:10.3390/molecules24010139.
[13]BHARGAVA R, JANSSEN W, ALTMANN C, et al. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice[J]. PLoS ONE, 2013, 8(5): e61405. DOI:10.1371/journal.pone.0061405.
[14]AISIKU I P, YAMAL J M, DOSHI P, et al. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury[J]. Crit Care, 2016, 20: 288. DOI:10.1186/s13054-016-1470-7.
[15]VILLAR J, AMBRS A, MOSTEIRO F, et al. A prognostic enrichment strategy for selection of patients with acute respiratory distress syndrome in clinical trials[J]. Crit Care Med, 2019, 47(3): 377-385. DOI:10.1097/CCM.0000000000003624.
[16]XU Z, WU G M, LI Q, et al. Predictive value of combined Lips and ANG-2 level in critically ill patients with ARDS risk factors[J]. Mediators Inflamm, 2018, 2018: 1739615. DOI:10.1155/2018/1739615. 
[17]王冉, 张巧, 杨旭, 等. 急性呼吸窘迫综合征进展及预后的危险因素研究[J]. 解放军医学杂志, 2017, 42(5): 456-462. DOI:10.11855/j.issn.0577-7402.2017.05.17. 
WANG R, ZHANG Q, YANG X, et al. Research of the risk factors predicting progression and prognosis of acute respiratory distress syndrome[J]. Med J Chin PLA, 2017, 42(5): 456-462. DOI:10.11855/j.issn.0577-7402.2017.05.17.
[18]PANITCHOTE A, MEHKRI O, HASTINGS A, et al. Clinical predictors of renal non-recovery in acute respiratory distress syndrome[J]. BMC Nephrol, 2019, 20(1): 255. DOI:10.1186/s12882-019-1439-2.
[19]VILLAR J, MARTNEZ D, MOSTEIRO F, et al. Is overall mortality the right composite endpoint in clinical trials of acute respiratory distress syndrome?[J]. Crit Care Med, 2018, 46(6): 892-899. DOI:10.1097/CCM.0000000 000003022.

相似文献/References:

[1]卢孙山,易斌,鲁开智,等.七氟烷联合舒芬太尼对创伤性失血休克患者血清相关细胞凋亡因子的影响[J].第三军医大学学报,2016,38(08):868.
 Lu Sunshan,Yi Bin,Lu Kaizhi,et al.Effect of sufentanil combined with sevoflurane on serum apoptosis-related factors of traumatic hemorrhagic shock patients[J].J Third Mil Med Univ,2016,38(05):868.
[2]吴志雄,罗健,李芳,等.硫化氢对糖尿病大鼠心肌纤维化及NF-κB p65和TNF-α表达的影响[J].第三军医大学学报,2015,37(02):128.
 Wu Zhixiong,Luo Jian,Li Fang,et al.Effects of hydrogen sulfide on myocardial fibrosis and expression of TNF-α and NF-κB p65 in diabetic rats[J].J Third Mil Med Univ,2015,37(05):128.
[3]周勇,钟文彬,陈凯,等.Disulfiram联合Cu通过上调TNF-α表达及蓄积ROS诱导白血病干细胞凋亡[J].第三军医大学学报,2015,37(10):984.
 Zhou Yong,Zhong Wenbin,Chen Kai,et al.Disulfram combined with copper induces leukemia stem cell apoptosis through TNF-α/ROS pathway[J].J Third Mil Med Univ,2015,37(05):984.
[4]韩广玮,申雪晴,高文宏,等.超声复合微泡促进骨髓间充质干细胞归巢对大鼠前列腺炎的治疗作用[J].第三军医大学学报,2015,37(11):1108.
 Han Guangwei,Shen Xueqing,Gao Wenhong,et al.Efficiency of prostate-targeted homing of bone marrow mesenchymal stem cells in treatment of rat prostatitis mediated by microbubble-enhanced ultrasound[J].J Third Mil Med Univ,2015,37(05):1108.
[5]李兴锐,谭悦,刘童,等.双特异性磷酸酶3和TNF-α对雷公藤多苷片治疗类风湿关节炎的预后作用及其受调节机制[J].第三军医大学学报,2019,41(01):77.
 LI Xingrui,TAN Yue,LIU Tong,et al.phosphatase 3 and tumor necrosis factor-α as prognostic biomarkers and their regulation by tripterygium glycosides in rheumatoid arthritis[J].J Third Mil Med Univ,2019,41(05):77.
[6]吴万江,袁继超,陈亚星,等.姜黄素抑制TNF-α诱导的人脐带间充质干细胞凋亡[J].第三军医大学学报,2019,41(04):282.
 WU Wanjiang,YUAN Jichao,CHEN Yaxing,et al.Curcumin inhibits tumor necrosis factor-α-induced apoptosis of human umbilical cord mesenchymal stem cells in vitro[J].J Third Mil Med Univ,2019,41(05):282.
[7]唐相龙,龙宗泓,段光友,等.LOC339524基因介导脂多糖诱导小鼠小胶质bv2细胞系炎症因子的表达[J].第三军医大学学报,2019,41(04):289.
 TANG Xianglong,LONG Zonghong,DUAN Guangyou,et al.LOC339524 gene mediates lipopolysaccharide-induced expression of inflammatory cytokines in mouse microglia bv2 cell line[J].J Third Mil Med Univ,2019,41(05):289.

更新日期/Last Update: 2020-03-06