[1]王恬然,聂志强,邹灏,等.人参皂苷Rg1促进移植大鼠的组织工程血管内皮化[J].第三军医大学学报,2020,42(05):444-452.
 WANG Tianran,NIE Zhiqiang,ZOU Hao,et al.Ginsenoside Rg1 promotes endothelialization of tissue-engineered blood vessels in transplanted rats[J].J Third Mil Med Univ,2020,42(05):444-452.
点击复制

人参皂苷Rg1促进移植大鼠的组织工程血管内皮化(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第05期
页码:
444-452
栏目:
基础医学
出版日期:
2020-03-15

文章信息/Info

Title:
Ginsenoside Rg1 promotes endothelialization of tissue-engineered blood vessels in transplanted rats
作者:
王恬然聂志强邹灏霍达许有前朱楚洪
陆军军医大学(第三军医大学)基础医学院人体解剖学教研室,组织工程国家地方联合工程实验室,血管植入物国家地方联合工程实验室,烧伤、创伤与复合伤国家重点实验室,教育部生物力学与组织工程重点实验室,重庆市生物力学与组织工程重点实验室
Author(s):
WANG Tianran NIE Zhiqiang ZOU Hao HUO Da XU Youqian ZHU Chuhong

State Key Laboratory of Trauma, Burns and Combined injury, Department of Human Anatomy, National and Regional Engineering Laboratory for Tissue Engineering, National and Regional Engineering Laboratory for Vascular Implants, Key Laboratory of Biomechanics and Tissue Engineering of Ministry of Education, Chongqing Key Laboratory for Biomechanics and Tissue Engineering, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
组织工程血管内皮细胞人参皂苷Rg1内皮化
Keywords:
tissue-engineered blood vessels endothelial cells ginsenoside Rg1 endothelialization
分类号:
R285.5; R318.11; R329.28
文献标志码:
A
摘要:

目的包载人参皂苷Rg1(Ginsenoside Rg1,Rg1)构建促内皮化的组织工程血管(tissue-engineered blood vessels,TEBVs),并移植大鼠颈总动脉以观察其通畅情况和内皮化效果。方法 CCK-8和流式细胞凋亡检测培养48 h后Rg1对内皮细胞(endothelial cells,ECs)增殖和凋亡的影响,同时确定药物适宜工作浓度;将ECs分为对照组(普通培养基)、Rg1处理组(15.63 μmol/L Rg1培养基)和联合处理组[15.63 μmol/L Rg1+0.5 μg/mL 血管内皮生长因子受体-2(VEGFR2)抑制剂XL184培养基],检测各组细胞培养48 h后增殖和划痕愈合情况;构建壳聚糖包被的Rg1-(2-羟丙基)-γ-环糊精颗粒(Rg1-HGC/CS NPs,以下简称NPs)并修饰至胶原血管内腔面,进行FTIR、DLS和SEM检测;体外条件下,将ECs与脱细胞血管和构建的TEBVs共培养48 h,观察其生物相容性;动物实验分为胶原组(胶原处理的血管)、空白CS组(空白CS处理的胶原组血管)和实验组(NPs处理的胶原组血管),将其移植至SD大鼠的左侧颈总动脉;分别于30、90 d后使用超声和Micro-CT检查血管通畅情况;使用HE、Masson和(CD31 + vWF)免疫荧光观察90 d后血管的内皮化效果。结果Rg1通过VEGFR2对ECs产生促进增殖和迁移的作用(P<0.05),未见明显的凋亡影响;所构建的NPs粒径约为130 nm,大小均一(PDI<0.3),并已成功修饰至血管内腔面;共培养实验表明,所构建的TEBVs生物相容性较好,利于细胞贴附生长;移植30、90 d后的影像学检测显示,实验组较其他组通畅度良好;移植90 d后的HE、Masson切片染色显示,胶原组和空白CS组的血管发生形变,失去正常结构,且因血栓和胶原纤维增生而发生阻塞,而实验组血管外形完整且无明显阻塞;CD31和vWF免疫荧光显示,实验组血管内腔面均匀覆有ECs,内皮化效果较其他组良好。结论所构建的促内皮化TEBVs可促进血管的内皮化进程,维持血管移植后的远期通畅。

Abstract:

ObjectiveTo prepare the endothelialization-promoting tissue-engineered blood vessels (TEBVs) with encapsulated Ginsenoside Rg1 (Rg1) to promote endothelialization, and to evaluate its patency and endothelialization after implantation into the rat common carotid artery. MethodsCCK-8 assay and flow cytometry were used to detect the effects of Rg1 on the proliferation and apoptosis of endothelial cells (ECs) after 48 hours’ treatment, and the optimal dose of the agent was also determined. ECs was divided into control group, Rg1 treatment group (15.63 μmol/L Rg1), and Rg1+XL184 (15.63 μmol/L Rg1+0.5 μg/mL XL184, VEGFR2 inhibitor) treatment group. Cell proliferation and wound healing of ECs were examined after the treatment for 48 h. Chitosan coated Rg1-(2-hydroxypropyl)-cyclodextrin particles (Rg1-HGC/CS NPs, abbreviated as NPs) were prepared and modified to the lumen of blood vessels (after decellularization and collagen treatment), and then Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) and scanning electron microscopy (SEM) were used to detect these obtained samples. ECs were co-cultured with acellular vessels and TEBVs for 48 h to observe the biocompatibility. For in vivo study, the acellular vessels were divided into collagen group (collagen treatment), blank CS group (collagen and chitosan treatment), and NPs group (modified with NPs). Then these vessel samples were transplanted into the left common carotid artery of SD rats respectively. Ultrasound and micro-CT scanning were performed to observe the vascular patency in 30 and 90 d after transplantation. HE and Masson staining and immunofluorescence assay for CD31 and vWF were used to observe the endothelialization in each group in 90 d after transplantation. ResultsRg1 promoted the proliferation and migration of ECs via VEGFR2 (P<0.05), and showed no significant effect on apoptosis. The prepared NPs were about 130 nm in diameter and uniform in shape (PDI<0.3), and could be successfully modified to the lumen of blood vessels. The co-cultured study showed that endothelialization-promoting TEBVs displayed better biocompatibility for favorable of cell adhesion and growth. In 30 and 90 d after transplantation, radiological studies displayed that the NPs-treated vessels showed better vascular patency than the other groups. HE and Masson staining indicated that in 90 d after transplantation, the collagen and blank CS groups had blood vessels deformed, without normal structures and blocked due to the thrombosis and collagen fibrosis, while the NPs group had intact blood vessels and better patency. Immunofluorescence assay for CD31 and vWF showed that the lumen in the vessles from the NPs group had ECs well-covered, suggesting better endothelialization when compared with other groups. ConclusionEndothelialization-promoting TEBVs shows better promoting effect on endothelialization, and is helpful in maintenance of long-term patency of blood vessels after transplantation. 

参考文献/References:

[1]DAHL S L, KYPSON A P, LAWSON J H,et al. Readily available tissue-engineered vascular grafts[J]. Sci Transl Med, 2011, 3(68): 68ra9. DOI:10.1126/scitranslmed.3001426. 
[2]GAUDINO M, ANTONIADES C, BENEDETTO U,et al. Mechanisms, consequences, and prevention of coronary graft failure[J]. Circulation, 2017, 136(18): 1749-1764. DOI:10.1161/CIRCULATIONAHA.117.027597. 
[3]RATCLIFFE A. Tissue engineering of vascular grafts[J]. Matrix Biol, 2000, 19(4): 353-357. DOI:10.1016/s0945-053x(00)00080-9. 
[4]MEDZHITOV R. Inflammation 2010: new adventures of an old flame[J]. Cell, 2010, 140(6): 771-776. DOI:10.1016/j.cell.2010.03.006. 
[5]SEIFU D G, PURNAMA A, MEQUANINT K,et al. Small-diameter vascular tissue engineering[J]. Nat Rev Cardiol, 2013, 10(7): 410-421. DOI:10.1038/nrcardio.2013.77. 
[6]SONG H G, RUMMA R T, OZAKI C K,et al. Vascular tissue engineering: progress, challenges, and clinical promise[J]. Cell Stem Cell, 2018, 22(3): 340-354. DOI:10.1016/j.stem.2018.02.009. 
[7]VAN HINSBERGH V W. Endothelium: role in regulation of coagulation and inflammation[J]. Semin Immunopathol, 2012, 34(1): 93-106. DOI: 10.1007/s00281-011-0285-5. 
[8]SERBO J V, GERECHT S. Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis[J]. Stem Cell Res Ther, 2013, 4(1): 8. DOI:10.1186/scrt156. 
[9]MELCHIORRI A J, HIBINO N, FISHER J P. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts[J]. Tissue Eng Part B Rev, 2013, 19(4): 292-307. DOI:10.1089/ten.TEB.2012.0577. 
[10]WU X D, GUO T, LIU L,et al. MiR-23a targets RUNX2 and suppresses ginsenoside Rg1-induced angiogenesis in endothelial cells[J]. Oncotarget, 2017, 8(35): 58072-58085. DOI:10.18632/oncotarget.19489. 
[11]SENGUPTA S, TOH S A, SELLERS L A,et al. Modulating angiogenesis: the Yin and the Yang in ginseng[J]. Circulation, 2004, 110(10): 1219-1225. DOI: 10.1161/01.CIR.0000140676.88412.CF. 
[12]LEUNG K W, NG H M, TANG M K,et al. Ginsenoside-Rg1 mediates a hypoxia-independent upregulation of hypoxia-inducible factor-1α to promote angiogenesis[J]. Angiogenesis, 2011, 14(4): 515-522. DOI:10.1007/s10456-011-9235-z. 
[13]YANCOPOULOS G D, DAVIS S, GALE N W,et al. Vascular-specific growth factors and blood vessel formation[J]. Nature, 2000, 407(6801): 242-248. DOI:10.1038/35025215. 
[14]VEIKKOLA T, ALITALO K. VEGFs, receptors and angiogenesis[J]. Semin Cancer Biol, 1999, 9(3): 211-220. DOI:10.1006/scbi.1998.0091. 
[15]YANG J Y, WEI K Y, WANG Y Q,et al. Construction of a small-caliber tissue-engineered blood vessel using icariin-loaded β-cyclodextrin sulfate for in situ anticoagulation and endothelialization[J]. Sci China Life Sci, 2018, 61(10): 1178-1188. DOI:10.1007/s11427-018-9348-9. 
[16]REKHARSKY M V, INOUE Y.Complexation thermodynamics of cyclodextrins[J]. Chem Rev, 1998, 98(5): 1875-1918. DOI:10.1021/cr970015o. 
[17]SZEJTLI J. Medicinal applications of cyclodextrins[J]. Med Res Rev, 1994, 14(3): 353-386. DOI:10.1002/med.2610140304. 
[18]UEKAMA K. Design and evaluation of cyclodextrin-based drug formulation[J]. Chem Pharm Bull, 2004, 52(8): 900-915. DOI:10.1248/cpb.52.900. 
[19]UEKAMA K, HIRAYAMA F, IRIE T. Cyclodextrin drug carrier systems[J]. Chem Rev, 1998, 98(5): 2045-2076. DOI:10.1021/cr970025p. 
[20]CHAN R Y, CHEN W F, DONG A,et al. Estrogen-like activity of ginsenoside Rg1 derived from Panax notoginseng[J]. J Clin Endocrinol Metab, 2002, 87(8): 3691-3695. DOI:10.1210/jcem.87.8.8717. 
[21]LU X Z, WANG J H, WU X,et al. Ginsenoside Rg1 promotes bone marrow stromal cells proliferation via the activation of the estrogen receptor-mediated signaling pathway[J]. Acta Pharmacol Sin, 2008, 29(10): 1209-1214. DOI:10.1111/j.1745-7254.2008.00874.x. 
[22]BUTTAFOCO L, ENGBERS-BUIJTENHUIJS P, POOT A A, et al. Physical characterization of vascular grafts cultured in a bioreactor[J]. Biomaterials, 2006, 27(11): 2380-2389. DOI:10.1016/j.biomaterials.2005.10.017.

相似文献/References:

[1]宋明宝,于学军,朱光旭,等.双层共培养模型中缝隙连接在内皮细胞调节平滑肌细胞增殖能力中的作用[J].第三军医大学学报,2009,31(04):285.
 SONG Ming-bao,YU Xue-jun,ZHU Guang-xu,et al.Interaction between endothelial cells and smooth muscle cells: an in vitro study based on Transwell insert[J].J Third Mil Med Univ,2009,31(05):285.
[2]莫贵艳,李敏,胡成平,等.茶氨酸对内皮细胞生长及肺癌血管生成的影响[J].第三军医大学学报,2012,34(20):2043.
 Mo Guiyan,Li Min,Hu Chengping,et al.Theanine suppresses angiogenesis of endothelial cells in vitro and in vivo[J].J Third Mil Med Univ,2012,34(05):2043.
[3]魏兵华,苟大明,余志豪.乌司他丁对体外循环中内皮相关因子的影响[J].第三军医大学学报,2007,29(15):1543.
[4]杨丽霞,沈珠甫,郭瑞威,等.血管紧张素Ⅱ诱导人脐静脉内皮细胞凋亡[J].第三军医大学学报,2008,30(05):414.
 YANG Li-xia,SHEN Zhu-fu,GUO Rui-wei,et al.Apoptosis of human umbilical vein endothelial cells induced by angiotensin Ⅱ and its mechanism[J].J Third Mil Med Univ,2008,30(05):414.
[5]李琪,张学渊.TNF-α对体外培养豚鼠耳蜗血管纹微血管内皮细胞通透性的影响[J].第三军医大学学报,2008,30(02):174.
 LI Qi,ZHANG Xue-yuan.Effect of TNF-α on blood-labyrinth barrier permeability of microvascular endothelial cells from cochlear stria vascularis of guinea pig[J].J Third Mil Med Univ,2008,30(05):174.
[6]沈珠甫,杨丽霞,郭瑞威,等.神经酰胺对人内皮细胞凋亡及bax、bcl-2表达的影响[J].第三军医大学学报,2008,30(10):957.
 SHEN Zhu-fu,YANG Li-xia,GUO Rui-wei,et al.Effects of ceramide on apoptosis of human endothelial cells and expressions of bcl-2 and bax[J].J Third Mil Med Univ,2008,30(05):957.
[7]谭永红,王东,肖桃元,等.大鼠半胸照射致肺纤维化模型的病理学观察[J].第三军医大学学报,2006,28(02):104.
[8]曹爱红,石红建,聂芳,等.纳米磁性探针转染大鼠外周血内皮祖细胞的磁共振成像实验研究[J].第三军医大学学报,2008,30(20):1948.
 CAO Ai-hong,SHI Hong-jian,NIE Fang,et al.Magnetic resonance imaging of endothelial progenitor cells from rat peripheral blood labeled with nano-bioprobe of superparamagnetic iron oxide[J].J Third Mil Med Univ,2008,30(05):1948.
[9]王红,陈国勇,赵长霖,等.大鼠角膜酸烧伤对角膜内皮细胞损伤和修复的实验观察[J].第三军医大学学报,2006,28(11):1181.
[10]阎萍,杨鹰,韩静,等.人卵巢癌微血管内皮细胞的分离培养与鉴定[J].第三军医大学学报,2006,28(10):1087.

更新日期/Last Update: 2020-03-06