LIU Yijia,YU Jing,ZHANG Wei,et al.Inhibitory role of trichostatin A in secretion function of mouse peripheral lymph node cells[J].J Third Mil Med Univ,2020,42(03):253-258.

曲古抑菌素A抑制小鼠周围淋巴结细胞分泌功能(/HTML )




Inhibitory role of trichostatin A in secretion function of mouse peripheral lymph node cells
LIU Yijia YU Jing ZHANG Wei LIU Ke LIANG Huaping LI Suiyan YAN Jun

School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province, 610031; 2State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042; 3College of Emergency and Trauma, Hainan Medical University, Haikou, Hainan Province, 570100, China

trichostatin A peripheral lymph nodes musculin interleukin 17A interleukin 22
R364.5; R967; R978.1

目的研究曲古抑菌素A(trichostatin A,TSA)对小鼠周围淋巴结细胞分泌功能的影响,并初步探讨其机制。方法颈椎脱臼法处死成年雄性C57BL/6小鼠,取周围淋巴结(peripheral lymph nodes, LN)、肠系膜淋巴结(mesenteric lymph nodes, MLN)、派伊尔结(Peyer’s patches, PP)、脾脏(spleen, SP)、骨髓(bone marrow, BM)和胸腺(thymus, Thy),采用qPCR检测各免疫器官中Musculin(MSC)、IL-17A和IL-22的mRNA水平。取小鼠高表达MSC、IL-17和IL-22的免疫组织制备细胞悬液,采用完全随机试验设计分为对照组、1 μg/mL 脂多糖(lipopolysaccharides, LPS)组、1 μg/mL LPS+10 ng/mL TSA组、1 μg/mL LPS +30 ng/mL TSA组和1 μg/mL LPS+50 ng/mL TSA组,置于37 ℃、5% CO2培养箱中分别培养6、12 h和24 h。收集上清及细胞,采用ELISA检测细胞上清中TNF-α和IL-10的分泌水平,确定TSA处理的最佳时间点。采用qPCR检测该时间点细胞MSC、IL-17A和IL-22的mRNA水平。结果与野生型小鼠中枢免疫器官BM相比,小鼠LN高表达MSC、IL-17A和IL-22(P<0.01, P<0.05);同样与Thy相比,小鼠LN也高表达MSC、IL-17A和IL-22(P<0.05)。与LPS组相比,不同浓度TSA能够降低各时间点小鼠LN细胞分泌TNF-α和IL-10的水平(P<0.01, P<0.05),并下调IL-17A和IL-22的表达(P<0.01),同时上调MSC(P<0.01, P<0.05),其最佳时间点是12 h。结论TSA能够抑制LPS刺激LN细胞的分泌功能,其机制可能与MSC、IL-17A和IL-22的表达变化有关。


Objective To investigate the role of trichostatin A (TSA) and its mechanism on secretory function of peripheral lymph node cells in mice.  MethodsThe adult male C57BL/6 mice were sacrificed and their peripheral lymph nodes (LN), mesenteric lymph nodes (MLN), Peyer’s patches (PP), spleen (SP), bone marrow (BM) and thymus (Thy) were collected. The mRNA levels of musculin (MSC), interleukin-17 A (IL-17A) and interleukin-22 (IL-22) in above immune organs were detected by real-time quantity polymerase chain reaction (qPCR). Then the cell suspensions with high mRNA levels of MSC, IL-17A and IL-22, were prepared and randomly divided into 6 groups, including control group, 1 μg/mL lipopolysaccharide (LPS) group, 1 μg/mL LPS+10 ng/mL TSA group, 1 μg/mL LPS +30 ng/mL TSA group and 1 μg/mL LPS + 50 ng/mL TSA group. After the above cells were cultured under 37 ℃ and 5% CO2 for 6, 12 or 24 h, the supernatant and cells were collected. The secretion levels of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) from the supernatant were measured by enzyme linked immunosorbent assay (ELISA), while the optimal time point of TSA treatment was determined. And then, the mRNA levels of MSC, IL-17A and IL-22 were detected by qPCR at this time point.  ResultsOur results suggested that the mouse LN had highly expressed MSC, IL-17A, and IL-22 when compared with BM (P<0.01, P<0.05), and similar results were seen when compared with Thy (P<0.05). Compared with the LPS group, different concentrations of TSA decreased the secretion levels of TNF-α and IL-10 (P<0.01, P<0.05), and at the same time, the treatment down-regulated the expression levels of IL-17A and IL-22 (P<0.01), while up-regulated that of MSC (P<0.01, P<0.05). The best time point was identified as 12 h. ConclusionTSA inhibits the secretory function of LN cells stimulated by LPS, which might be  related with the changes of MSC, IL-17A and IL-22 expression.


[1]MESCHER A L, NEFF A W, KING M W. Inflammation and immunity in organ regeneration[J]. Dev Comp Immunol, 2017, 66: 98-110. DOI:10.1016/j.dci.2016.02.015. 
[2]KASTENMLLER W, TORABI-PARIZI P, SUBRAMANIAN N, et al. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread[J]. Cell, 2012, 150(6): 1235-1248. DOI:10.1016/j.cell.2012.07.021. 
[3]NAKANISHI Y, IKEBUCHI R, CHTANOVA T, et al. Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes[J]. Mucosal Immunol, 2018, 11(2): 437-448. DOI:10.1038/mi.2017.64. 
[4]MALHOTRA D, FLETCHER A L, TURLEY S J. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity[J]. Immunol Rev, 2013, 251(1): 160-176. DOI:10.1111/imr.12023. 
[5]MATHAS S, JANZ M, HUMMEL F, et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma[J]. Nat Immunol, 2006, 7(2): 207-215. DOI:10.1038/ni1285. 
[6]WU C, CHEN Z, DARDALHON V, et al. The transcription factor musculin promotes the unidirectional development of peripheral Treg cells by suppressing the TH2 transcriptional program[J]. Nat Immunol, 2017, 18(3): 344-353. DOI:10.1038/ni.3667. 
[7]YU L. MyoR is expressed in nonmyogenic cells and can inhibit their differentiation[J]. Exp Cell Res, 2003, 289(1): 162-173. DOI:10.1016/s0014-4827(03)00252-0.
[8]PETRILLO M G, BORTNER C D, CIDLOWSKI J A. Glucocorticoids: inflammation and immunity[M]//The hypothalamic-pituitary-adrenal axis in health and disease. Cham: Springer International Publishing, 2016: 43-63. DOI:10.1007/978-3-319-45950-9_3.
SUN Z,HUANG C B,SONG Y J,et al.Purification of exosomes from rat mesenteric and peripheral lymph nodes and their effect on T cell proliferation[J].J Third Mil Med Univ, 2013,35(4):307-310.
[10]MULLINS D W, ENGELHARD V H. Limited infiltration of exogenous dendritic cells and naive T cells restricts immune responses in peripheral lymph nodes[J]. J Immunol, 2006, 176(8): 4535-4542. DOI:10.4049/jimmunol.176.8.4535.
[11]MARTN-FONTECHA A, LANZAVECCHIA A, SALLUSTO F. Dendritic cell migration to peripheral lymph nodes[J]. Handb Exp Pharmacol, 2009(188): 31-49. DOI:10.1007/978-3-540-71029-5_2. 
[12]ZHAO P, HOFFMAN E P. Musculin isoforms and repression of MyoD in muscle regeneration[J]. Biochem Biophys Res Commun, 2006, 342(3): 835-842. DOI:10.1016/j.bbrc.2006.01.188. 
[13]MONCAUT N, CROSS J W, SILIGAN C, et al. Musculin and TCF21 coordinate the maintenance of myogenic regulatory factor expression levels during mouse craniofacial development[J]. Development, 2012, 139(5): 958-967. DOI:10.1242/dev.068015. 
[14]LU J R, BASSEL-DUBY R, HAWKINS A, et al. Control of facial muscle development by MyoR and capsulin[J]. Science, 2002, 298(5602): 2378-2381. DOI:10.1126/science.1078273. 
[15]CHIU Y K, LIN I Y, SU S T, et al. Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation[J]. J Immunol, 2014, 193(5): 2207-2217. DOI:10.4049/jimmunol.1400411. 
[16]余静, 唐婉琦, 杨雪, 等. Musculin KO-Foxp3-GFPKI小鼠模型的制备及在严重创伤介导Treg-Th17失衡中的初步应用[J]. 第三军医大学学报, 2018, 40(16): 1435-1443. DOI:10.16016/j.1000-5404.201802112.
YU J, TANG W Q, YANG X, et al. Establishment of a transgenic mouse model with musculin knockout and Foxp3-GFP knockin and role of musculin in severe trauma-induced Treg-Th17 imbalance[J]. J Third Mil Med Univ, 2018, 40(16): 1435-1443. DOI:10.16016/j.1000-5404.201802112.
[17]KIM M, PARK C, JUNG J, et al. The histone deacetylase class Ⅰ, Ⅱ inhibitor trichostatin A delays peripheral neurodegeneration[J]. J Mol Histol, 2019, 50(2): 167-178. DOI:10.1007/s10735-019-09815-1. 
[18]WANG S C, WANG S T, LIU H T, et al. Trichostatin A induces bladder cancer cell death via intrinsic apoptosis at the early phase and Sp1-survivin downregulation at the late phase of treatment[J]. Oncol Rep, 2017, 38(3): 1587-1596. DOI:10.3892/or.2017.5795. 
[19]BLANCHARD F, CHIPOY C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases?[J]. Drug Discov Today, 2005, 10(3): 197-204. DOI:10.1016/S1359-6446(04)03309-4. 
[20]HENKENS T, PAPELEU P, ELAUT G, et al. Trichostatin A, a critical factor in maintaining the functional differentiation of primary cultured rat hepatocytes[J]. Toxicol Appl Pharmacol, 2007, 218(1): 64-71. DOI:10.1016/j.taap.2006.10.012. 
[21]ZHANG P, GUO Z Y, WU Y, et al. Histone deacetylase inhibitors inhibit the proliferation of gallbladder carcinoma cells by suppressing AKT/mTOR signaling[J]. PLoS ONE, 2015, 10(8): e0136193. DOI:10.1371/journal.pone.0136193. 

更新日期/Last Update: 2020-02-06