[1]杨国强,黄嘉诚,袁俊杰,等.过氧化物还原酶1在脑出血后的表达变化及作用[J].第三军医大学学报,2020,42(03):300-306.
 YANG Guoqiang,HUANG Jiacheng,YUAN Junjie,et al.Expression and role of peroxiredoxin 1 in rats after intracerebral hemorrhage[J].J Third Mil Med Univ,2020,42(03):300-306.
点击复制

过氧化物还原酶1在脑出血后的表达变化及作用(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第03期
页码:
300-306
栏目:
神经科学
出版日期:
2020-02-15

文章信息/Info

Title:
Expression and role of peroxiredoxin 1 in rats after intracerebral hemorrhage
作者:
杨国强黄嘉诚袁俊杰张钦龚昌雄谢乐星熊小檍杨清武
陆军军医大学(第三军医大学)第二附属医院神经内科
 
Author(s):
YANG Guoqiang HUANG Jiacheng YUAN Junjie ZHANG Qin GONG Changxiong XIE Lexing XIONG Xiaoyi YANG Qingwu
Department of Neurology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
 
关键词:
过氧化物还原酶1脑出血转录组测序
Keywords:
peroxiredoxin 1 intracerebral hemorrhage RNA sequencing
分类号:
R345; R363.21; R743.34
文献标志码:
A
摘要:

目的探讨过氧化物还原酶1(peroxiredoxin 1,Prdx1)在中枢神经系统中的细胞定位,以及脑出血(intracerebral hemorrhage,ICH)后Prdx1的表达变化和可能的作用机制。方法取5只8~10周龄SD大鼠脑组织灌注,冰冻切片,免疫荧光染色比较Prdx1在神经元、星形胶质细胞和小胶质细胞中的表达情况。35只8~10周龄SD大鼠按随机数字表法分为sham组、ICH 12 h组、ICH 1 d 组、ICH 2 d 组、ICH 3 d组、ICH 4 d组、ICH 5 d组(n=5),后5组采用自体血注射法建立ICH模型,sham组予以等量生理盐水作为对照。取各组大鼠脑组织,Western blot 和qRT-PCR检测各组中Prdx1 mRNA和蛋白的表达。在HeLa细胞中转染Prdx1干扰质粒或空质粒载体,分为干扰组和对照组,并对两组HeLa细胞进行转录组测序(RNA sequencing,RNA-seq),对差异表达基因(differentially expressed genes,DEGs)进行GO分析,预测Prdx1在ICH中可能的作用。结果免疫荧光染色结果提示:在皮层,Prdx1主要分布于NeuN+的神经元,而在纹状体中,Prdx1主要分布于GFAP+的星形胶质细胞中。Western blot及qRT-PCR结果提示:Prdx1表达在ICH后3 d显著增高(P<0.05),随着时间延长,逐渐降低。RNA-seq及GO分析提示Prdx1引起的差异表达基因主要涉及在炎症反应、细胞凋亡、固有免疫反应、轴突发育等与ICH继发损伤相关的通路。结论Prdx1在不同脑区有不同的细胞分布特点;ICH后,Prdx1升高明显,其在ICH中的可能作用机制与炎症、免疫反应、轴突发育等相关。

Abstract:

Objective To investigate the cellular localization of peroxiredoxin 1 (Prdx1) in the central nervous system, and its expression changes and possible mechanisms after intracerebral hemorrhage (ICH). MethodsFive 8~10-week old SD rats underwent cerebral perfusion, and the brain tissue was sectioned for immunofluorescence staining to observe the localization of Prdx1 in the neurons, astrocytes and microglia. A total of 35 SD rats were randomly divided into sham group, and ICH for 12 h, and 1, 2, 3, 4 and 5 d groups (n=5). The ICH model was established by autologous blood injection in the latter 5 groups, and the sham group was treated with the same amount of normal saline as the control. The expression of Prdx1 at mRNA and protein levels in each group was detected by qRT-PCR and Western blotting. Prdx1 interference plasmid or blank vector were transfected into HeLa cells, and RNA-seq was performed to detect the differentially expressed genes (DEGs) in 2 groups of cells. GO analysis was performed on DEGs to predict the possible role of Prdx1 in ICH. ResultsImmunofluorescence staining showed that Prdx1 was mainly distributed in the NeuN+ neurons in the cortex, while in the striatum, Prdx1 was mainly in the astrocytes. Western blot and qRT-PCR results showed that Prdx1 significantly increased on the 3rd day after ICH (P<0.05), and gradually decreased with elapse of time. RNA-seq and Go analysis suggested that the DEGs caused by Prdx1 were mainly involved in the inflammatory response, apoptosis, innate immune response, axon development and other pathways associated with secondary injury of ICH. ConclusionPrdx1 has different distribution characteristics in different cerebral regions. After ICH, Prdx1 is significantly elevated, and it may be associated with inflammation, immune response, and axon development in ICH. 

参考文献/References:

[1]KRISHNAMURTHI R V, FEIGIN V L, FOROUZANFAR M H, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the global burden of disease study 2010[J]. Lancet Glob Health, 2013, 1(5): e259-e281. DOI:10.1016/S2214-109X(13)70089-5. 
[2]KEEP R F, HUA Y, XI G H. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-731. DOI:10.1016/S1474-4422(12)70104-7.
[3]MENDELOW A D, GREGSON B A, FERNANDES H M, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial[J]. Lancet, 2005, 365(9457): 387-397. DOI:10.1016/S0140-6736(05)17826-X.
[4]MENDELOW A D, GREGSON B A, ROWAN E N, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial[J]. Lancet, 2013, 382(9890): 397-408. DOI:10.1016/S0140-6736(13)60986-1. 
[5]ZHENG H P, CHEN C L, ZHANG J, et al. Mechanism and therapy of brain edema after intracerebral hemorrhage[J]. Cerebrovasc Dis, 2016, 42(3/4): 155-169. DOI:10.1159/000445170.
[6]HU L T, ZHANG H Y, WANG B Y, et al. MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase[J]. Int Immunopharmacol, 2019, 76: 105887. DOI:10.1016/j.intimp.2019.105887.
[7]LAI X, XIONG Y, ZHOU J, et al. Verbascoside attenuates acute inflammatory injury in experimental cerebral hemorrhage by suppressing TLR4[J]. Biochem Biophys Res Commun, 2019, 519(4): 721-726. DOI:10.1016/j.bbrc.2019.09.057.
[8]SHICHITA T, HASEGAWA E, KIMURA A, et al. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain[J]. Nat Med, 2012, 18(6): 911-917. DOI:10.1038/nm.2749.
[9]YAMAGUCHI M, SATO H, BANNAI S. Induction of stress proteins in mouse peritoneal macrophages by oxidized low-density lipoprotein[J]. Biochem Biophys Res Commun, 1993, 193(3): 1198-1201. DOI:10.1006/bbrc.1993.1752.
[10]MIN Y, KIM M J, LEE S, et al. Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation[J]. Autophagy, 2018, 14(8): 1347-1358. DOI:10.1080/15548627.2018.1474995.
[11]LIU W, GUO W J, ZHU Y C, et al. Targeting peroxiredoxin 1 by a curcumin analogue, AI-44, inhibits NLRP3 inflammasome activation and attenuates lipopolysaccharide-induced Sepsis in mice[J]. J Immunol, 2018, 201(8): 2403-2413. DOI:10.4049/jimmunol.1700796.
[12]XU H, CAO J, XU J G, et al. GATA-4 regulates neuronal apoptosis after intracerebral hemorrhage via the NF-κB/Bax/Caspase-3 pathway both in vivo and in vitro[J]. Exp Neurol, 2019, 315: 21-31. DOI:10.1016/j.expneurol.2019.01.018.
[13]XIONG X Y, LIU L, WANG F X, et al. Toll-like receptor 4/MyD88-mediated signaling of hepcidin expression causing brain iron accumulation, oxidative injury, and cognitive impairment after intracerebral hemorrhage[J]. Circulation, 2016, 134(14): 1025-1038. DOI:10.1161/CIRCULATIONAHA.116.021881.
[14]WANG Y C, ZHOU Y, FANG H, et al. Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage[J]. Ann Neurol, 2014, 75(6): 876-889. DOI:10.1002/ana.24159.
[15]MENG Z Y, ZHAO T, ZHOU K, et al. A20 ameliorates intracerebral hemorrhage-induced inflammatory injury by regulating TRAF6 polyubiquitination[J]. J Immunol, 2017, 198(2): 820-831. DOI:10.4049/jimmunol.1600334.
[16]LIU D L, ZHAO L X, ZHANG S, et al. Peroxiredoxin 1-mediated activation of TLR4/NF-κB pathway contributes to neuroinflammatory injury in intracerebral hemorrhage[J]. Int Immunopharmacol, 2016, 41: 82-89. DOI:10.1016/j.intimp.2016.10.025.
[17]NAKASO K, KITAYAMA M, MIZUTA E, et al. Co-induction of heme oxygenase-1 and peroxiredoxin I in astrocytes and microglia around hemorrhagic region in the rat brain[J]. Neurosci Lett, 2000, 293(1): 49-52. DOI:10.1016/s0304-3940(00)01491-9.
[18]YAN Y, SABHARWAL P, RAO M, et al. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2[J]. Cell, 2009, 138(6): 1209-1221. DOI:10.1016/j.cell.2009.06.042.
[19]JAUNEAU A C, ISCHENKO A, CHATAGNER A, et al. Interleukin-1beta and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes[J]. J Neuroinflamm, 2006, 3: 8. DOI:10.1186/1742-2094-3-8. 
[20]BRENNAN F H, JOGIA T, GILLESPIE E R, et al. Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2[J]. JCI Insight, 2019, 4(9): 98254. DOI:10.1172/jci.insight.98254.
[21]POLICHENI A, HORIKAWA K, MILLA L, et al. CARD11 is dispensable for homeostatic responses and suppressive activity of peripherally induced FOXP3+regulatory T cells[J]. Immunol Cell Biol, 2019, 97(8): 740-752. DOI:10.1111/imcb.12268. 

相似文献/References:

[1]李志伟.微创血肿清除术治疗脑出血的诊治体会[J].第三军医大学学报,2007,29(21):2107.
[2]文华海.脑出血3例误诊分析[J].第三军医大学学报,2007,29(15):1522.
[3]崔洁,曹参祥,郑静,等.脑出血大鼠脑组织MDA、TNF-α含量变化及其依达拉奉干预效应的研究[J].第三军医大学学报,2007,29(11):1032.
 CUI Jie,CAO Can-xiang,ZHENG Jing,et al.Changes of TNF-alpha and malondialdehyde content in brain tissue and therapeutic effect of edaravone on rats after intracerebral hemorrhage[J].J Third Mil Med Univ,2007,29(03):1032.
[4]邹显巍,吴珊.大鼠脑出血后脑肺组织NF-κB的表达及其在急性肺损伤中的作用[J].第三军医大学学报,2007,29(19):1859.
 ZOU Xian-wei,WU Shan.Expression of NF-κB in the brain and lung and its role in acute lung injury following intracerebral hemorrhage of rats[J].J Third Mil Med Univ,2007,29(03):1859.
[5]袁建国,向强,熊建琼,等.急诊微创介入术对高血压脑出血的救治研究[J].第三军医大学学报,2006,28(19):1989.
[6]廖群纷,梁德胜,王为民,等.脑出血患者血清S100b蛋白与神经功能损害的相关性研究[J].第三军医大学学报,2005,27(14):1494.
[7]王苇,张新江,殷小平,等.脑出血超早期血肿周围病变的MRI研究及其临床意义[J].第三军医大学学报,2005,27(05):422.
[8]周宇燕.高血压脑出血颅内血肿微创清除术后再出血的观察与护理[J].第三军医大学学报,2005,27(04):290.
[9]汤可,周青,周敬安,等.脑出血破入脑室的高龄重症患者死亡危险因素分析[J].第三军医大学学报,2011,33(16):1773.
[10]何程,林爱国,王俊伟,等.术中B超辅助下经外侧裂-岛叶入路显微手术治疗基底节区脑出血[J].第三军医大学学报,2010,32(13):1468.

更新日期/Last Update: 2020-02-06