[1]周波,童海鹏,陈晓,等.多模态MRI评价胶质母细胞瘤中组织因子表达水平的价值[J].第三军医大学学报,2020,42(03):307-313.
 ZHOU Bo,TONG Haipeng,CHEN Xiao,et al.Value of multimodal MRI in evaluation of tissue factor expression in glioblastoma[J].J Third Mil Med Univ,2020,42(03):307-313.
点击复制

多模态MRI评价胶质母细胞瘤中组织因子表达水平的价值(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第03期
页码:
307-313
栏目:
神经科学
出版日期:
2020-02-15

文章信息/Info

Title:
Value of multimodal MRI in evaluation of tissue factor expression in glioblastoma
作者:
周波童海鹏陈晓薛巍徐凯张伟国
陆军军医大学(第三军医大学)大坪医院放射科
 
Author(s):
ZHOU Bo TONG Haipeng CHEN Xiao XUE Wei XU Kai ZHANG Weiguo

Department of Radiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

关键词:
磁共振成像组织因子胶质母细胞瘤影像学标志物
Keywords:
 
分类号:
R341; R730.264; R445.2
文献标志码:
A
摘要:

目的探讨多模态磁共振成像与胶质母细胞瘤(glioblastoma, GBM)中组织因子(tissue factor, TF)表达水平的相关性及其作为TF影像学标志物的价值。方法回顾性分析本院2014年8月至2018年11月经手术治疗并取得病理证实的60例GBM患者的术前常规及功能磁共振成像资料,经后处理得到各参数(包括坏死比、表面规律性、强化区域体积、水肿区域体积及容量转移常数Ktrans、相对脑血容量rCBV、相对脑血流量rCBF)。肿瘤组织经TF免疫组化染色后统计其表达量,分析各参数与TF表达量的相关性,应用ROC曲线分析获得鉴别TF高表达和低表达GBM的各影像学参数的最佳阈值及其敏感度和特异性。结果坏死比、Ktrans值、rCBV值、rCBF值与TF表达量呈正相关(r=0.665,r=0.631,r=0.661,r=0.619,P值均<0.001)。TF高表达组的坏死比、Ktrans、rCBV、rCBF均显著高于低表达组(P<0.01)。ROC曲线分析各参数均能很好反映TF的表达,rCBF的AUC达到0.907(0.889,0.857),坏死比的AUC为0.869(0.846,0.676),Ktrans 的AUC为0.854(0.813,0.833),rCBV 的AUC为0.804(0.944,0.571)。常规磁共振与灌注磁共振参数联合运用对TF表达量反映能力更好,坏死比联合Ktrans 的AUC为0.982(1,0.875),坏死比联合rCBV的AUC为0.939(0.889,0.905),坏死比联合rCBF的AUC为0.971(0.944,0.857)。结论多种磁共振参数(坏死比、Ktrans、rCBV及rCBF)能够较好地反映GBM患者肿瘤内TF的表达,可作为GBM中TF表达量的MRI影像学标志物。

Abstract:

Objective To explore the correlation between multimodal magnetic resonance imaging (MRI) and expression of tissue factor (TF) in glioblastoma (GBM), and investigate the values of MRI parameters as imaging markers for TF. MethodsThe preoperative routine and functional MRI data of 60 patients with GBM confirmed by surgery and pathology in our hospital from August 2014 to November 2018 were retrospectively collected and analyzed for the parameters, including necrosis ratio, surface regularity, enhanced area volume, edema area volume, volume transfer constant Ktrans, relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) by post-processing. The expression of TF in the GBM tissue was detected with immunohistochemical staining, and then the correlation between above each parameter and TF expression was analyzed. Receiver operating characteristic (ROC) curve analysis was used to obtain the optimal threshold values, sensitivity and specificity of various imaging parameters in differentiation between GBM with TF of high expression and of low expression. ResultsThe necrosis ratio, and Ktrans, rCBV and rCBF values were positively correlated with TF expression level (r=0.665, r=0.631, r=0.661, r=0.619, all P<0.001). The necrosis ratio and Ktrans, rCBV and rCBF values were significantly higher in the highly-expressed TF group than the lowly-expressed TF group (P<0.01). ROC analysis showed that all these MRI parameters presented TF level well, with area under curve (AUC) of rCBF reaching 0.907 (0.889, 0.857), that of necrosis ratio 0.869 (0.846, 0.676), that of Ktrans 0.854 (0.813, 0.833), and that of rCBV 0.804 (0.944, 0.571). The combination of conventional magnetic resonance and perfusion magnetic resonance parameters showed even better presention for TF expression level, with the AUC of necrosis ratio combined with Ktrans 0.982 (1, 0.875), necrosis ratio with rCBV 0.939 (0.889, 0.905), and necrosis ratio with rCBF 0.971 (0.944, 0.857). ConclusionVarious magnetic resonance parameters (necrosis ratio, Ktrans, rCBV and rCBF) can better reflect TF expression in GBM patients, and can be used as imaging markers for TF expression in GBM.

参考文献/References:

[1]MAGNUS N, GARNIER D, MEEHAN B, et al. Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations[J]. Proc Natl Acad Sci USA, 2014, 111(9): 3544-3549. DOI:10.1073/pnas.1314118111. 
[2]ANDREASEN E B, NIELSEN O L, TRANHOLM M, et al. Expression of tissue factor in canine mammary tumours and correlation with grade, stage and markers of haemostasis and inflammation[J]. Vet Comp Oncol, 2016, 14(2): 191-201. DOI:10.1111/vco.12089. 
[3]GARNIER D, MILSOM C, MAGNUS N, et al. Role of the tissue factor pathway in the biology of tumor initiating cells[J]. Thromb Res, 2010, 125(Suppl 2): S44-S50. DOI:10.1016/S0049-3848(10)70012-8. 
[4]HAMADA K, KURATSU J, SAITOH Y, et al. Expression of tissue factor correlates with grade of malignancy in human glioma[J]. Cancer, 1996, 77(9): 1877-1883. DOI:10.1002/(SICI)1097-0142(19960501)77:9<1877:AID-CNCR18>3.0.CO;2-X. 
[5]AMERATUNGA M, PAVLAKIS N, WHEELER H, et al. Anti-angiogenic therapy for high-grade glioma[J]. Cochrane Database Syst Rev, 2018, 11: CD008218. DOI:10.1002/14651858.CD008218.pub4. 
[6]ZHU S J, KISIEL W, LU Y J, et al. Visualizing cancer and response to therapy in vivo using Cy5.5-labeled factor VIIa and anti-tissue factor antibody[J]. J Drug Target, 2015, 23(3): 257-265. DOI:10.3109/1061186X.2014.988217. 
[7]SUH C H, KIM H S, JUNG S C, et al. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis[J]. Eur Radiol, 2019, 29(2): 745-758. DOI:10.1007/s00330-018-5608-7. 
[8]MA T, YANG S L, JING H Y, et al. Apparent diffusion coefficients in prostate cancer: correlation with molecular markers Ki-67, HIF-1α and VEGF[J]. NMR Biomed, 2018, 31(3): e3884. DOI:10.1002/nbm.3884. 
[9]TAKASHIMA H, TSUJI A B, SAGA T, et al. Molecular imaging using an anti-human tissue factor monoclonal antibody in an orthotopic glioma xenograft model[J]. Sci Rep, 2017, 7(1): 12341. DOI:10.1038/s41598-017-12563-5. 
[10]何志明,谢雪梅,张紫寅,等.增强MRI和18F-FDG PET-CT对胶质瘤术后复发病灶诊断价值的比较[J].检验医学与临床,2014,11(1):3-5.DOI:10.3969/j.issn.1672-9455.2014.01.002.
HE Z M, XIE X M, ZHANG Z Y, et al. Comparison of enhanced MRI and 18F-FDG PET-CT in the diagnosis of recurrent lesions after glioma surgery[J]. Lab Med Clin,2014,11(1): 3-5.DOI: 10.3969/j.issn.1672-9455. 2014.01.002.
[11]CHEN X, XIE T, FANG J Q, et al. Dynamic MR imaging for functional vascularization depends on tissue factor signaling in glioblastoma[J]. Cancer Biol Ther, 2018, 19(5): 416-426. DOI:10.1080/15384047.2018.1423924. 
[12]BARAJAS R F Jr, CHA S. Benefits of dynamic susceptibility-weighted contrast-enhanced perfusion MRI for glioma diagnosis and therapy[J]. CNS Oncol, 2014, 3(6): 407-419. DOI:10.2217/cns.14.44. 
[13]PREZ-BETETA J, MOLINA-GARCA D, ORTIZ-ALHAMBRA J A, et al. Tumor surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma[J]. Radiology, 2018, 288(1): 218-225. DOI:10.1148/radiol.2018171051. 
[14]CALLANDER N S, VARKI N, RAO L V. Immunohistochemical identification of tissue factor in solid tumors[J]. Cancer, 1992, 70(5): 1194-1201. DOI:10.1002/1097-0142(19920901)70:5<1194:aid-cncr2820700528>3.0.co;2-e.
[15]JIANG Z X, TAN G Z, SHI Z R, et al. Galectin-3 expression in benign and malignant skin diseases with epidermal hyperplasia[J]. Am J Dermatopathol, 2017, 39(10): 738-741. DOI:10.1097/DAD.0000000000000781. 
[16]PUDUVALLI V K, HOANG N. Chemotherapy of high-grade astrocytomas in adults[J]. Prog Neurol Surg, 2018, 31: 116-144. DOI:10.1159/000467374. 
[17]RIBATTI D, DJONOV V. Intussusceptive microvascular growth in tumors[J]. Cancer Lett, 2012, 316(2): 126-131. DOI:10.1016/j.canlet.2011.10.040. 
[18]GUAN M, JIN J, SU B, et al. Tissue factor expression and angiogenesis in human glioma[J]. Clin Biochem, 2002, 35(4): 321-325. DOI:10.1016/s0009-9120(02)00312-0. 
[19]GIANNARELLI C, ALIQUE M, RODRIGUEZ D T, et al. Alternatively spliced tissue factor promotes plaque angiogenesis through the activation of hypoxia-inducible factor-1α and vascular endothelial growth factor signaling[J]. Circulation, 2014, 130(15): 1274-1286. DOI:10.1161/CIRCULATIONAHA.114.006614. 
[20]SVENSSON K J,KUCHARZEWSKA P,CHRISTIANSON H C, et al. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells[J]. Proc Natl Acad Sci USA, 2011, 108(32): 13147-13152. DOI:10.1073/pnas.1104261108. 
[21]CARNEIRO-LOBO T C, KONIG S, MACHADO D E, et al. Ixolaris, a tissue factor inhibitor, blocks primary tumor growth and angiogenesis in a glioblastoma model[J]. J Thromb Haemost, 2009, 7(11): 1855-1864. DOI:10.1111/j.1538-7836.2009.03553.x. 
[22]BREIJ E C, DE GOEIJ B E, VERPLOEGEN S, et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors[J]. Cancer Res, 2014, 74(4): 1214-1226. DOI:10.1158/0008-5472.CAN-13-2440. 
[23]HARTER P N, DTZMANN S, DROTT U, et al. Anti-tissue factor (TF9-10H10) treatment reduces tumor cell invasiveness in a novel migratory glioma model[J]. Neuropathology, 2013, 33(5): 515-525. DOI:10.1111/neup.12018. 
[24]ARTZI M, BLUMENTHAL D T, BOKSTEIN F, et al. Classification of tumor area using combined DCE and DSC MRI in patients with glioblastoma[J]. J Neurooncol, 2015, 121(2): 349-357. DOI:10.1007/s11060-014-1639-3. 
[25]林建煌,周杰钦,江佳舒,等.胶质母细胞瘤的影像学表现与病理学对照分析[J].实用医学影像杂志,2018,19(6):51-53.DOI:10.16106/j.cnki.cn14-1281/r.2018.06.017.
LIN J H, ZHOU J Q, JIANG J S, et al. Comparative analysis of the imaging features and pathology of glioblastoma[J]. J Appl Med Imaging, 2018,19(6): 51-53.DOI: 10.16106/j.cnki.cn14-1281/r.2018.06.017.
[26]GROSSMANN P, GUTMAN D A, DUNN W D Jr, et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in glioblastoma[J]. BMC Cancer, 2016, 16: 611. DOI:10.1186/s12885-016-2659-5. 
[27]CHEN X, XIE T, FANG J Q, et al. Quantitative in vivo imaging of tissue factor expression in glioma using dynamic contrast-enhanced MRI derived parameters[J]. Eur J Radiol, 2017, 93: 236-242. DOI:10.1016/j.ejrad.2017.06.006. 

相似文献/References:

[1]高兰英,刘增长,考国营.凝集素样氧化型低密度脂蛋白受体-1在C反应蛋白诱导人脐静脉内皮细胞组织因子表达中的作用[J].第三军医大学学报,2012,34(15):1538.
 Gao Lanying,Liu Zengzhang,Kao Guoying.Role of LOX-1 on tissue factor expression in human umbilical vein endothelial cells induced by C-reactive protein[J].J Third Mil Med Univ,2012,34(03):1538.
[2]杨益民,应大君,李黔宁,等.切应力诱导大鼠颈动脉内皮细胞组织因子表达的检测与分析[J].第三军医大学学报,2005,27(22):2248.
[3]陈凯,李中虎,江鹏,等.CD44、CD133和TF与肝癌中门静脉癌栓形成及恶性预后相关[J].第三军医大学学报,2014,36(10):1068.
 Chen Kai,Li Zhonghu,Jiang Peng,et al.CD44, CD133 and TF correlate with formation of portal vein tumor thrombus and poor prognosis in patients with hepatocellular carcinoma[J].J Third Mil Med Univ,2014,36(03):1068.

更新日期/Last Update: 2020-02-06