ZOU Jiayi,YANG Jiangquan,XU Lin,et al.Effects of Polygonum multiflorum extract on DNA methylation and gene transcription in brain tissue of aging mice[J].J Third Mil Med Univ,2020,42(01):9-17.

何首乌提取液对衰老小鼠脑组织DNA甲基化和基因转录的影响(/HTML )




Effects of Polygonum multiflorum extract on DNA methylation and gene transcription in brain tissue of aging mice
ZOU Jiayi YANG Jiangquan XU Lin FAN Fang GE Zhenglong

Department of Molecular Biology and Biochemistry, Zunyi Medical University, Zunyi, Guizhou Province, 563099, China

Polygonum multiflorum senescence methylation transcriptome
R282.71; R285.5; R339.38

目的 分析何首乌提取液(Polygonum multiflorum extract,PME)对D-半乳糖致衰老C57BL/6小鼠脑组织DNA甲基化和转录组水平的影响,探讨何首乌延缓衰老的作用机制。方法 50只C57BL/6小鼠分为5组:正常对照组(CC)、衰老组(MC)、PME高剂量组(MH)、中剂量组(MM)及低剂量组(ML);除CC组外,其余4组用D-半乳糖诱导建立衰老模型,60 d后MH组、MM组及ML组分别以1、0.6、0.3 g·mL-1·kg-1的PME灌胃60 d,CC组及MC组灌胃等体积生理盐水。各组处理好后,麻醉小鼠并摘除眼球取血,通过检测血清中丙二醛(MDA)含量、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性判断衰老模型建立及何首乌延缓小鼠衰老的作用;采用简化甲基化测序(reduced representation bisulfite sequencing,RRBS)和RNA-seq测序方法检测各组小鼠脑组织DNA甲基化水平和转录水平,并利用生物信息学方法分析各组样本间差异性甲基化区域(differentially methylated region,DMR)以及差异表达基因,对DMR位于启动子区的相关基因进行GO聚类及KEGG通路分析,并通过实时荧光定量PCR验证部分基因的表达。结果与CC组比较,MC组中SOD、GSH-Px活性明显下降(P<0.05),MDA含量明显升高(P<0.05);PME作用后,衰老小鼠中抗氧化酶活性及MDA含量均明显缓解,以MM组较为明显(P<0.05)。在DNA甲基化测序中发现,CC组与MC组间及MC组与MM组间均发生甲基化变化的DMR位于启动子区的相关基因有52个,其中有7个基因的甲基化水平与转录组结果呈负相关,包括与衰老相关的Synpo和Mapkapk5;13个基因的甲基化水平与转录组呈正相关,包括与衰老相关的Tcf7和Rab15;且这4个基因mRNA水平均与转录组测序结果一致。结论 何首乌提取液可能通过调控衰老小鼠中Synpo、Mapkapk5、Tcf7和Rab15基因甲基化水平,进而调节其转录水平,发挥延缓小鼠衰老的作用。


ObjectiveTo determine the effect of Polygonum multiflorum extract (PME) on DNA methylation and transcriptome levels in the brain tissue of D-galactose-induced senescence C57BL/6 mice, and explore its mechanism of delaying aging. MethodsFifty C57BL/6 mice were randomly divided into 5 groups, that is, normal control group (CC), aging group (MC) , high-, medium- and low-dosed PME groups (MH, MM and ML). Except the CC group, the mice of the other 4 groups were induced to establish an aging model by D-galactose. Sixty days later, the mice of the MH, MM and ML groups were given intragastrical infusion with PME at 1 , 0.6 and 0.3 g·mL-1·kg-1 for 60 d, and those of CC group and the MC group received same volume of normal saline. All the mice were anesthetized, and the eyeballs were removed to collect blood samples for malondialdehyde (MDA) content, and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities to determine the establishment of aging model and the effect of Polygonum multiflorum in delaying aging in mice. The DNA methylation level and transcription level in brain tissue of each group of mice were detected by reduced representation bisulfite sequencing (RRBS) and RNA-seq sequencing. And bioinformatics analysis was used to analyze the differentially methylated region (DMR) and differentially expressed genes in the brain samples of each group. The related genes in the promoter region of DMR were analyzed by GO clustering and KEGG pathway analysis. Real-time qPCR was used to verify the expression of some genes. ResultsCompared with the CC group, the activities of SOD and GSH-Px were decreased obviously (P<0.05), and the content of MDA was increased significantly in the MC group (P<0.05). After PME treatment, the activities of antioxidant enzymes and MDA content in aging mice were distinctly relieved, especially in the MM group (P<0.05). In DNA methylation sequencing, there were 52 related genes in the promoter region of DMR with methylation changes between the CC group and the MC group, and between the MC group and the MM group. Among these genes, the methylation levels of 7 genes were negatively correlated with transcriptome results, including Synpo and Mapkapk5 (associated with senescence), while the methylation levels of 13 genes were positively correlated with the transcriptome, including Tcf7 and Rab15 (associated with senescence). The mRNA levels of these 4 genes were consistent with the transcriptome sequencing results. ConclusionPME exerts a delaying senescence effect probably by regulating the methylation of Synpo, Mapkapk5, Tcf7 and Rab15 genes, and thereby regulating their transcription levels in senescent mice.


[1]CHEN T, YANG Y J, LI Y K, et al. Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo[J]. J Ethnopharmacol, 2016, 190: 74-82. DOI:10.1016/j.jep.2016.06.012.
[2]LV L, GU X H, TANG J, et al. Antioxidant activity of stilbene glycoside from Polygonum multiflorum Thunb in vivo[J]. Food Chem, 2007, 104(4): 1678-1681. DOI:10.1016/j.foodchem.2007.03.022.
[3]STEELE M L, TRUONG J, GOVINDARAGHAVAN S, et al. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells[J]. Neurochem Int, 2013, 62(5): 522-529. DOI:10.1016/j.neuint.2012.08.018.
[4]HAN M N, LU J M, ZHANG G Y, et al. Mechanistic studies on the use of Polygonum multiflorum for the treatment of hair graying[J]. Biomed Res Int, 2015, 2015(2):647-655. DOI:10.1155/2015/651048.
[5]CHAN Y C, WANG M F, CHANG H C. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice[J]. Am J Chin Med, 2003, 31(2): 171-179. DOI:10.1142/S0192415X03000862.
[6]LEE S Y, AHN S M, WANG Z Y, et al. Neuroprotective effects of 2, 3, 5, 4′-tetrahydoxystilbene-2-O-β-D-glucoside from Polygonum multiflorum against glutamate-induced oxidative toxicity in HT22 cells[J]. J Ethnopharmacol, 2017, 195: 64-70. DOI:10.1016/j.jep.2016.12.001.
[7]LPEZ-OTN C, BLASCO M A, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217. DOI:10.1016/j.cell.2013.05.039.
[8]JUNG M, PFEIFER G P. Aging and DNA methylation[J]. BMC Biol, 2015, 13(1):7-14. DOI:10.1186/s12915-015-0118-4.
[9]SADIGH-ETEGHAD S, MAJDI A, MCCANN S K, et al. D-galactose-induced brain ageing model: A systematic review and meta-analysis on cognitive outcomes and oxidative stress indices[J]. PLoS ONE, 2017, 12(8): e0184122. DOI:10.1371/journal.pone.0184122.
[10]GOETZL E J, KAPOGIANNIS D, SCHWARTZ J B, et al. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease[J]. FASEB J, 2016, 30(12): 4141-4148. DOI:10.1096/fj.201600816R.
[11]DWYER S F, GELMAN I H. Cross-phosphorylation and interaction between src/FAK and MAPKAP5/PRAK in early focal adhesions controls cell motility[J]. J Cancer Biol Res, 2014, 2(1): 1045.
[12]CHOW K T, TIMBLIN G A, MCWHIRTER S M, et al. MK5 activates Rag transcription via Foxo1 in developing B cells[J]. J Exp Med, 2013, 210(8): 1621-1634. DOI:10.1084/jem.20130498.
[13]KOSTENKO S. Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase[J]. World J Biol Chem, 2011, 2(5): 73-89. DOI:10.4331/wjbc.v2.i5.73.
[14]ZHENG M, WANG Y H, WU X N, et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1[J]. Nat Cell Biol, 2011, 13(3): 263-272. DOI:10.1038/ncb2168.
[15]UTZSCHNEIDER D T, DELPOUX A, WIELAND D, et al. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1[J]. Cell Rep, 2018, 22(13): 3454-3467. DOI:10.1016/j.celrep.2018.03.020.
[16]WONG P, IWASAKI A. RAB15 empowers dendritic cells to drive antiviral immunity[J]. Sci Immunol, 2017, 2(13): eaan6448. DOI:10.1126/sciimmunol.aan6448.
[17]LEE S V, CHOI K H, CHOI Y W, et al. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice[J]. Mol Med Rep, 2014, 9(4): 1415-1421. DOI:10.3892/mmr.2014.1943.
[18]吕锦芳, 宁康健, 丁小燕, 等. 何首乌粗提物对小鼠部分抗氧化抗衰老指标的影响[J]. 畜牧与兽医, 2012, 44(7): 58-60.
LYU J F, NING K J, DING X Y, et al. Effects of crude extract of polygonum multiflorum on partial antioxidant and anti-aging index in mice[J]. Animal Husb Vet Med, 2012, 44(7): 58-60.
[19]KIM S J, HWANG Y H, MUN S K, et al. Protective effects of 2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-d-glucoside on ovariectomy induced osteoporosis mouse model[J]. Int J Mol Sci, 2018, 19(9): E2554. DOI:10.3390/ijms19092554.
[20]ZHOU M R, LI J, WU J K, et al. Preventive effects of Polygonum multiflorum on glucocorticoid-induced osteoporosis in rats[J]. Exp Ther Med, 2017, 14(3): 2445-2460. DOI:10.3892/etm.2017.4802.
[21]YU Y, LANG X Y, LI X X, et al. 2, 3, 5, 4′-Tetrahydroxystilbene-2-O-β-d-glucoside attenuates MPP+/MPTP-induced neurotoxicity in vitro and in vivo by restoring the BDNF-TrkB and FGF2-Akt signaling axis and inhibition of apoptosis[J]. Food Funct, 2019, 10(9): 6009-6019. DOI:10.1039/c9fo01309a.
[22]ZHANG Y, LIU B, CHEN X, et al. Naringenin ameliorates behavioral dysfunction and neurological deficits in a d-galactose-induced aging mouse model through activation of PI3K/akt/Nrf2 pathway[J]. Rejuv Res, 2017, 20(6): 462-472. DOI:10.1089/rej.2017.1960.
[23]FENG Y, YU Y H, WANG S T, et al. Chlorogenic acid protects D-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice[J]. Pharm Biol, 2016, 54(6): 1027-1034. DOI:10.3109/13880209.2015.1093510.
[24]GAO J Q, YU Z P, JING S, et al. Protective effect of Anwulignan against D-galactose-induced hepatic injury through activating p38 MAPK-Nrf2-HO-1 pathway in mice[J]. Clin Interv Aging, 2018, 13: 1859-1869. DOI:10.2147/CIA.S173838.
[25]GUTIERREZ-ARCELUS M, LAPPALAINEN T, MONTGOMERY S B, et al. Correction: Passive and active DNA methylation and the interplay with genetic variation in gene regulation[J]. eLife, 2013, 2: e01045. DOI:10.7554/elife.01045.
[26]JI C Y, TANG M P, ZEIDLER C, et al. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes[J]. Autophagy, 2019, 15(7): 1199-1213. DOI:10.1080/15548627.2019.1580096.
[27]DATTA A, CHAI Y L, TAN J M, et al. An iTRAQ-based proteomic analysis reveals dysregulation of neocortical synaptopodin in Lewy body dementias[J]. Mol Brain, 2017, 10(1): 36. DOI:10.1186/s13041-017-0316-9.
[28]BOURDENX M, DEHAY B. Autophagy and brain: the case of neurodegenerative diseases[J]. Med Sci (Paris) 2017,33(3): 268-274. DOI: 10.1051/medsci/20173303013.
[29]TANG J, LIU J H, LI X, et al. PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death[J]. Oxid Med Cell Longev, 2014, 2014: 735618. DOI:10.1155/2014/735618.
[30]TSEREL L, KOLDE R, LIMBACH M, et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes[J]. Sci Rep, 2015, 5: 13107. DOI:10.1038/srep13107.
[31]FARR J N, WEIVODA M M, NICKS K M, et al. Osteoprotection through the deletion of the transcription factor rorβ in mice[J]. J Bone Miner Res, 2018, 33(4): 720-731. DOI:10.1002/jbmr.3351.
[32]TSEREL L, KOLDE R, LIMBACH M, et al. Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes[J]. Sci Rep, 2015, 5: 13107. DOI:10.1038/srep13107.
[33]WEYAND C M, GORONZY J J. Aging of the immune system. mechanisms and therapeutic targets[J]. Ann Am Thorac Soc, 2016, 13(Suppl 5): S422-S428. DOI:10.1513/AnnalsATS.201602-095AW.
[34]SILVIN A, YU C N, LAHAYE X, et al. Constitutive resistance to viral infection in human CD141+ dendritic cells[J]. Sci Immunol, 2017, 2(13): eaai8071. DOI:10.1126/sciimmunol.aai8071.


 Zhou Yue,Jiang Rong,Wang Ping,et al.Tert-butylhydroperoxide induces aging of Sca-1+ hematopoietic stem and progenitor cells by regulating cell cycle[J].J Third Mil Med Univ,2011,33(01):1893.
[3]杨仕明,房殿春,罗元辉,等.不同年龄供体正常胃粘膜端粒状态分析[J].第三军医大学学报,1999,21(02):0.[doi:10.16016/j.1000-5404.1999.02.023 ]
[4]周元国,王正国,朱佩芳,等.G蛋白在心血管功能调节及急性肺损伤中的作用研究[J].第三军医大学学报,1997,19(02):0.[doi:10.16016/j.1000-5404.1997.02.024 ]

更新日期/Last Update: 2020-01-07