[1]张文倩,王巧竹,施佩菲,等.AT1R/miR-26a通路在高血压血管重塑中的调控机制[J].第三军医大学学报,2020,42(01):59-66.
 ZHANG Wenqian,WANG Qiaozhu,SHI Peifei,et al.Regulation mechanism of AT1R/miR-26a pathway in hypertensive vascular remodeling[J].J Third Mil Med Univ,2020,42(01):59-66.
点击复制

AT1R/miR-26a通路在高血压血管重塑中的调控机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第01期
页码:
59-66
栏目:
基础医学
出版日期:
2020-01-15

文章信息/Info

Title:
Regulation mechanism of AT1R/miR-26a pathway in hypertensive vascular remodeling
作者:
张文倩王巧竹施佩菲冯雁京高登峰刘昕
西安交通大学第二附属医院心内科
Author(s):
ZHANG Wenqian WANG Qiaozhu SHI Peifei FENG Yanjing GAO Dengfeng LIU Xin

Department of Cardiology, the Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, 710004, China

关键词:
高血压血管重塑MicroRNA-26aAT1受体
Keywords:
hypertension vascular remodeling microRNA-26a AT1 receptor
分类号:
R544.1; R966; R977.6
文献标志码:
A
摘要:

目的阐明AT1R/miR-26a通路在高血压血管重塑中的重要作用及分子机制。方法①将24只8周龄雄性自发性高血压大鼠(SHRs)分为(n=8):氯沙坦干预组[氯沙坦 20 mg/(kg·d)灌胃]、哌唑嗪干预组[哌唑嗪5 mg/(kg·d)灌胃]、SHR模型对照组[纯水10 mL/(kg·d)灌胃];雄性WKY大鼠作为正常对照组[纯水10 mL/(kg·d)灌胃](n=6),干预8周;干预前后3~5 d测定鼠尾动脉收缩压(SBP),直至干预期满。②将各组大鼠麻醉取胸主动脉,qPCR检测大鼠胸主动脉miR-26a的表达水平。③剩余组织石蜡包埋行HE、Masson染色,α-actin 和PCNA免疫组化染色。④Western blot检测大鼠胸主动脉AT1R、TGFβ1、p-smad3、CTGF表达情况。⑤将培养传至3~9代的大鼠胸主动脉平滑肌细胞(VSMC)分为AngⅡ处理组(VSMC+AngⅡ,AngⅡ10-7 mol/L,作用24 h处理细胞)和对照组(VSMC+Ctrl)(n=6),qPCR检测miR-26a的表达水平,Western blot检测smad3和p-smad3表达情况。结果①干预期满时,氯沙坦组、哌唑嗪组SBP明显低于模型对照组,但均高于正常对照组(P<0.05),氯沙坦组、哌唑嗪组间SBP差异无统计学意义(P>0.05)。②氯沙坦组、哌唑嗪组胸主动脉miR-26a相对表达高于模型对照组(P<0.05),且氯沙坦组高于哌唑嗪组(P<0.05),但均较正常对照组表达低(P<0.05)。③氯沙坦组、哌唑嗪组中膜厚度/管腔内经(MT/LD)、胶原体积分数(CVF)及平滑肌细胞增值指数均低于模型对照组(P<0.05),且氯沙坦组低于哌唑嗪组;正常对照组血管管壁未见明显增厚,平滑肌分布均匀且动脉内膜完整,无显著的胶原纤维沉积现象,平滑肌细胞排列整齐,胞核形态规则。④氯沙坦组、哌唑嗪组胸主动脉AT1R、p-smad3、TGFβ1、CTGF相对表达低于模型对照组(P<0.05),且氯沙坦组低于哌唑嗪组(P<0.05),但均高于正常对照组(P<0.05)。⑤VSMC+AngⅡ组细胞miR-26a表达显著低于对照组,且p-smad3表达显著高于VSMC+Ctrl组(P<0.05)。结论 miR-26a可阻止血压升高,且在高血压血管重塑进程中具有保护性作用;阻断AT1受体可通过上调miR-26a改善高血压血管重塑。

Abstract:

ObjectiveTo elucidate the important role and molecular mechanism of AT1R/miR-26a pathway in hypertensive vascular remodeling. Methods① Eight-week-old male spontaneously hypertensive rats (SHRs) were randomly divided into losartan group [gavage with losartan 20 mg/(kg·d) for 8 weeks], prazosin group [gavage with prazosin 5 mg/(kg·d) for 8 weeks], SHR control group [gavage with pure water 10 mL/(kg·d) for 8 weeks], with 8 animals in each groups. Six eight-week-old male WKY rats served as normal control group [gavage with pure water 10 mL/(kg·d) for 8 weeks]. All rats in each group were measured for systolic blood pressure (SBP) through tail artery in 3 to 5 d before and during the intervention period until the end of treatment. ② After the rats were anesthetized, the thoracic aorta were harvested for detecting the expression level of miR-26a by real-time quantitative polymerase chain reaction (qPCR). ③ The thoracic aorta was embedded in paraffin, and sectioned for HE and Masson staining, α-actin and PCNA immunohistochemistry. ④ The expression of AT1R, TGFβ1, p-smad3 and CTGF in the thoracic aorta were detected by Western blotting. ⑤ The rat thoracic aortic smooth muscle cells (VSMCs) at 3 to 9 passages were divided into AngⅡ treatment group (VSMCs+AngⅡ, AngⅡ10-7 mol/L, treated for 24 h), and control group (VSMC+Ctrl). qPCR was used to detect the expression level of miR-26a, and the expression of smad3 and p-smad3 was observed by Western blotting. Results① At the end of treatment received, SBP was significantly lower in the losartan and prazosin groups than the SHR control group, but all of them were obviously higher than that of normal control group (P<0.05). There was no significant difference in SBP between the losartan and prazosin groups (P>0.05). ②The expression of miR-26a in the thoracic aorta was notably higher in the losartan and prazosin groups than the SHR control group, but statistically lower than the normal control group (P<0.05), and that of the losartan group was higher than that of the prazosin group (P<0.05). ③ Media thickness/lumen diameter (MT/LD), collagen volume fraction (CVF), and smooth muscle cell proliferation index in the losartan and prazosin groups were remarkably lower than those in the SHR control group (P<0.05), and those in the losartan group were lower than those of the prazosin group. The normal control group had no obvious thickening of the vascular wall, with well-arranged smooth muscle cells, and regular morphology of the nucleus, and no significant collagen fiber deposition. ④The expression levels of AT1R, p-smad3, TGFβ1 and CTGF in the thoracic aorta were significantly lower in the losartan and prazosin groups than the SHR control group (P<0.05). Although those in the losartan group were lower than those of the prazosin group (P<0.05), the levels in the both group were higher than those of normal control group (P<0.05). ⑤The expression of miR-26a was significantly lower, and that of p-smad3 was higher in VSMC+AngⅡ group when compared with VSMC+Ctrl group (P<0.05). ConclusionmiR-26a prevents blood pressure from rising and has a protective effect in the process of hypertensive vascular remodeling. Blocking AT1 receptor may improve the remodeling by up-regulating miR-26a.

参考文献/References:

[1]CAI G J, ZHANG X Y, WENG W J, et al. Associations between PPARG polymorphisms and the risk of essential hypertension[J]. PLoS ONE, 2017, 12(7): e0181644. DOI:10.1371/journal.pone.0181644.
[2]MULVANY M J. Small artery remodelling in hypertension[J]. Basic Clin Pharmacol Toxicol, 2012, 110(1): 49-55. DOI:10.1111/j.1742-7843.2011.00758.x.
[3]LIU J, HUANG Y Q, CHEN S, et al. Role of endogenous sulfur dioxide in regulating vascular structural remodeling in hypertension[J]. Oxid Med Cell Longev, 2016, 2016: 4529060. DOI:10.1155/2016/4529060.
[4]WENZEL U, TURNER J E, KREBS C, et al. Immune mechanisms in arterial hypertension[J]. J Am Soc Nephrol, 2016, 27(3): 677-686. DOI:10.1681/ASN.2015050562.
[5]HAN Y C, LI H C. MiRNAs as biomarkers and for the early detection of non-small cell lung cancer (NSCLC)[J]. J Thorac Dis, 2018, 10(5): 3119-3131. DOI:10.21037/jtd.2018.05.32.
[6]HOLMBERG J, BHATTACHARIYA A, ALAJBEGOVIC A, et al. Loss of vascular myogenic tone in miR-143/145 knockout mice is associated with hypertension-induced vascular lesions in small mesenteric arteries[J]. Arterioscler Thromb Vasc Biol, 2018, 38(2): 414-424. DOI:10.1161/ATVBAHA.117.310499.
[7]HAN W, HAN Y C, LIU X K, et al. Effect of miR-29a inhibition on ventricular hypertrophy induced by pressure overload[J]. Cell Biochem Biophys, 2015, 71(2): 821-826. DOI:10.1007/s12013-014-0269-x.
[8]YANG X Y, DONG M, WEN H, et al. MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1[J]. Oncotarget, 2017, 8(44): 75844-75853. DOI:10.18632/oncotarget.17998.
[9]LEEPER N J, RAIESDANA A, KOJIMA Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function[J]. J Cell Physiol, 2011, 226(4): 1035-1043. DOI:10.1002/jcp.22422.
[10]WU W, SHANG Y Q, DAI S L, et al. MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF[J]. Bratisl Lek Listy, 2017, 118(8): 499-503. DOI:10.4149/BLL_2017_096.
[11]张益珊, 袁苗, 黄园, 等. MiR-26a/b在AngⅡ导致的高血压血管重塑中的作用[J]. 西安交通大学学报(医学版), 2017, 38(5): 649-654. DOI:10.7652/jdyxb201705005.
ZHANG Y S, YUAN M, HUANG Y, et al. Role of miR-26a/b in AngⅡ-induced hypertensive vascular remodeling[J]. J Xi’an Jiaotong Univ Med Sci, 2017, 38(5): 649-654. DOI:10.7652/jdyxb201705005.
[12]HARVEY A, MONTEZANO A C, LOPES R A, et al. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications[J]. Can J Cardiol, 2016, 32(5): 659-668. DOI:10.1016/j.cjca.2016.02.070.
[13]SAFAR M E, TOTO-MOUKOUO J J, BOUTHIER J A, et al. Arterial dynamics, cardiac hypertrophy, and antihypertensive treatment[J]. Circulation, 1987, 75(1 Pt 2): I156-I161.
[14]JONES BUIE J N, GOODWIN A J, COOK J A, et al. The role of miRNAs in cardiovascular disease risk factors[J]. Atherosclerosis, 2016, 254: 271-281. DOI:10.1016/j.atherosclerosis.2016.09.067.
[15]MELMAN Y F, SHAH R, DANIELSON K, et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: A translational pilot study[J]. Circulation, 2015, 131(25): 2202-2216. DOI:10.1161/CIRCULATIONAHA.114.013220.
[16]LI H S, GAO F, WANG X W, et al. Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease[J]. Biosci Rep, 2019, 39(5): BSR20182016. DOI:10.1042/BSR20182016.
[17]SHEN M C, MORTON J, DAVIDGE S T, et al. Loss of smooth muscle cell disintegrin and metalloproteinase 17 transiently suppresses angiotensin II-induced hypertension and end-organ damage[J]. J Mol Cell Cardiol, 2017, 103: 11-21. DOI:10.1016/j.yjmcc.2016.12.001.
[18]LI R, XIAO J, QING X T, et al. Sp1 mediates a therapeutic role of MiR-7a/b in angiotensin II-induced cardiac fibrosis via mechanism involving the TGF-β and MAPKs pathways in cardiac fibroblasts[J]. PLoS ONE, 2015, 10(4): e0125513. DOI:10.1371/journal.pone.0125513.
[19]LIANG H H, XU C Q, PAN Z W, et al. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis[J]. Mol Ther, 2014, 22(6): 1122-1133. DOI:10.1038/mt.2014.42.
[20]LI A Y, WANG J J, YANG S C, et al. Protective role of Gentianella acuta on isoprenaline induced myocardial fibrosis in rats via inhibition of NF-κB pathway[J]. Biomedecine Pharmacother, 2019, 110: 733-741. DOI:10.1016/j.biopha.2018.12.029.
[21]SAKAI N, NAKAMURA M, LIPSON K E, et al. Inhibition of CTGF ameliorates peritoneal fibrosis through suppression of fibroblast and myofibroblast accumulation and angiogenesis[J]. Sci Rep, 2017, 7(1): 5392. DOI:10.1038/s41598-017-05624-2.
[22]AN E, PARK H, LEE A C. Inhibition of fibrotic contraction by C-phycocyanin through modulation of connective tissue growth factor and α-smooth muscle actin expression[J]. Tissue Eng Regen Med, 2016, 13(4): 388-395. DOI:10.1007/s13770-015-0104-5.
[23]ZHANG Q H, HUANG F, YAO Y L, et al. Interaction of transforming growth factor-β-Smads/microRNA-362-3p/CD82 mediated by M2 macrophages promotes the process of epithelial-mesenchymal transition in hepatocellular carcinoma cells[J]. Cancer Sci, 2019, 110(8): 2507-2519. DOI:10.1111/cas.14101.
[24]ZHANG Y G, CHENG C T, WANG S, et al. Knockdown of FOXM1 inhibits activation of keloid fibroblasts and extracellular matrix production via inhibition of TGF-β1/Smad pathway[J]. Life Sci, 2019, 232: 116637. DOI:10.1016/j.lfs.2019.116637.
[25]CALVIER L, CHOUVARINE P, LEGCHENKO E, et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism[J]. Cell Metab, 2017, 25(5): 1118-1134.e7. DOI:10.1016/j.cmet.2017.03.011.
[26]GUAN T, ZHAO G Y, DUAN H H, et al. Activation of type 2 cannabinoid receptor (CB2R) by selective agonists regulates the deposition and remodelling of the extracellular matrix[J]. Biomedecine Pharmacother, 2017, 95: 1704-1709. DOI:10.1016/j.biopha.2017.09.085.
[27]POPOVIC N, BRIDENBAUGH E A, NEIGER J D, et al. Transforming growth factor-beta signaling in hypertensive remodeling of Porcine aorta[J]. Am J Physiol Heart Circ Physiol, 2009, 297(6): H2044-H2053. DOI:10.1152/ajpheart.01015.2008.
[28]TANG L H, PEI H F, YANG Y, et al. The inhibition of calpains ameliorates vascular restenosis through MMP2/TGF-β1 pathway[J]. Sci Rep, 2016, 6: 29975. DOI:10.1038/srep29975.
[29]LAN T H, HUANG X Q, TAN H M. Vascular fibrosis in atherosclerosis[J]. Cardiovasc Pathol, 2013, 22(5): 401-407. DOI:10.1016/j.carpath.2013.01.003.

相似文献/References:

[1]罗锋,向小勇,赵兴吉.大鼠左全肺切除致右心室重塑的研究[J].第三军医大学学报,2010,32(15):1642.
 Luo Feng,Xiang Xiaoyong,Zhao Xingji.Right ventricular remodeling induced by left total pneumonectomy in rats[J].J Third Mil Med Univ,2010,32(01):1642.

更新日期/Last Update: 2020-01-07