[1]段晨阳,向鑫明,匡磊,等.活化Drp1介导谷胱甘肽代谢调节失血性休克后线粒体功能的研究[J].第三军医大学学报,2020,42(01):50-58.
 DUAN Chenyang,XIANG Xinming,KUANG Lei,et al.Role of activated dynamin-related protein 1-mediated glutathione metabolism in regulation of mitochondrial dysfunction after hemorrhagic shock[J].J Third Mil Med Univ,2020,42(01):50-58.
点击复制

活化Drp1介导谷胱甘肽代谢调节失血性休克后线粒体功能的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第01期
页码:
50-58
栏目:
基础医学
出版日期:
2020-01-15

文章信息/Info

Title:
Role of activated dynamin-related protein 1-mediated glutathione metabolism in regulation of mitochondrial dysfunction after hemorrhagic shock
作者:
段晨阳向鑫明匡磊刘良明李涛
陆军军医大学(第三军医大学)野战外科研究所战伤休克与输血研究室,创伤、烧伤与复合伤国家重点实验室
Author(s):
DUAN Chenyang XIANG Xinming KUANG Lei LIU Liangming LI Tao

State Key Laboratory of Trauma, Burns and Combined Injury, Department of War Wound Shock and Blood Transfusion, Institute of Surgery Research, Army Medical University (Third Military Medical

关键词:
休克缺氧线粒体Drp1谷胱甘肽能量代谢
Keywords:
shock hypoxia mitochondria dynamin-related protein 1 glutathione energy metabolism
分类号:
Q244; R363.22; R605.971
文献标志码:
A
摘要:

目的探究失血性休克后活化Drp1介导线粒体功能改变与能量代谢之间的关系及其作用机制。方法60只C57雌鼠(8周龄,体质量约20 g)分为休克WT组与常态WT组(n=30)。60只Drp1 KO雌鼠(C57品系,8周龄,体质量约20 g)分为休克Drp1 KO组(作缺血休克处理)与常态Drp1 KO组(n=30)。观察失血性休克后血管组织能量代谢、线粒体代谢、线粒体功能、Drp1活性变化,以及干预Drp1对休克后能量代谢、线粒体代谢及其差异代谢物的影响。对血管平滑肌细胞进行Drp1过表达、外源性谷胱甘肽(10 mmol/L)处理后观察干预Drp1及谷胱甘肽对缺氧后ROS、线粒体膜电位等线粒体功能变化。结果休克后血管组织能量代谢减低、谷胱甘肽等线粒体代谢异常、线粒体ROS产生增高2.3倍、线粒体ATP含量减少67.8%、线粒体呼吸强度OCR减弱50%(P<0.05),缺氧后ROS水平增高4倍、线粒体膜电位减少76.7%(P<0.05),并且休克和缺氧后均发现Drp1发生活化及线粒体转位(P<0.05)。常态WT组血管组织谷胱甘肽水平为(1.35±0.42)nmol/μg,休克WT组谷胱甘肽水平为(0.55±0.20)nmol/μg,休克Drp1 KO组血管组织谷胱甘肽水平(0.94±0.30)nmol/μg明显高于休克WT组(P<0.05)。Drp1过表达后血管平滑肌细胞ROS水平增加3.3倍、线粒体膜电位减少70%(P<0.05),进一步外源性补充谷胱甘肽后ROS水平和线粒体膜电位明显改善(P<0.05)。结论失血性休克后活化Drp1可通过抑制谷胱甘肽线粒体代谢引起线粒体功能障碍和机体能量代谢紊乱。

Abstract:

Objective To explore the relationship between activated dynamin-related protein 1 (Drp1)-mediated mitochondrial function and energy metabolism after hemorrhagic shock and clarify its potential mechanisms. MethodsSixty C57 female mice (8-weeks old, weighing about 20 g) were randomly divided into shock+WT group (n=30, treated with hemorrhagic shock) and Normal+WT group (n=30). Thirty Drp1 KO C57 female mice (8-weeks old, weighing about 20 g) were treated with hemorrhagic shock as shock+Drp1 KO group, and the other 30 KO mice were regarded as Normal+Drp1 KO group. The changes of energy metabolism, mitochondrial metabolism, mitochondrial functions as well as Drp1 activity in vascular tissues after hemorrhagic shock were observed in WT and KO mice respectively. Vascular smooth muscle cells (VSMCs) were treated with Drp1 over-expression and exogenous glutathione (10 mmol/L) to confirm the effects of Drp1 and glutathione on mitochondrial functions after shock. ResultsAfter hemorrhagic shock, the energy metabolism and mitochondrial metabolism, such as glutathione, were decreased significantly (P<0.05), mitochondrial reactive oxygen species (ROS) production were increased by 2.3 times (P<0.05), ATP content was decreased by 67.8% (P<0.05), and mitochondrial respiratory rates were decreased by 50% (P<0.05). However, hypoxia resulted in the ROS production of VSMCs enhanced by 4 times and the mitochondrial membrane potential (ΔΨm) decreased by 76.7% (P<0.05). What’s more, both Drp1 activation and mitochondrial translocation were observed in shock-treated mice and hypoxia-induced VSMCs. The level of glutathione was 1.35±0.0.42 nmol/μg in normal+WT group, 0.55±0.20 nmol/μg in shock+WT group, while the level in shock+Drp1 KO group (0.94±0.30 nmol/μg) was much higher than that in shock+WT group (P<0.05). Drp1 over-expression induced ROS level in VSMCs increased by 3.3 times and ΔΨm decreased by 70% (P<0.05). After further exogenous glutathione supplementation, both ROS level and ΔΨm were improved significantly (P<0.05). ConclusionActivated Drp1 after hemorrhagic shock induces mitochondrial dysfunctions and abnormal energy metabolism by inhibiting glutathione metabolism.

参考文献/References:

[1]DUAN C Y, ZHANG J, WU H L, et al. Regulatory mechanisms, prophylaxis and treatment of vascular leakage following severe trauma and shock[J]. Mil Med Res, 2017, 4: 11. DOI:10.1186/s40779-017-0117-6.
[2]DUAN C Y, YANG G M, LI T, et al. Advances in vascular hyporeactivity after shock: the mechanisms and managements[J]. Shock, 2015, 44(6): 524-534. DOI:10.1097/SHK. 0000000000000457.
[3]LI Z Q, LI J, ZHANG S W, et al. Metabolomics analysis of gut barrier dysfunction in a trauma-hemorrhagic shock rat model[J]. Biosci Rep, 2019, 39(1): BSR20181215. DOI:10.1042/ BSR20181215.
[4]DUAN C Y, LI T, LIU L M. Efficacy of limited fluid resuscitation in patients with hemorrhagic shock: a meta-analysis[J]. Int J Clin Exp Med, 2015, 8(7): 11645-11656.
[5]FONSECA T B, SNCHEZ-GUERRERO , MILOSEVIC I, et al. Mitochondrial fission requires DRP1 but not dynamins[J]. Nature, 2019, 570(7761): E34-E42. DOI:10.1038/s41586- 019-1296-y.
[6]DUAN C Y, CHEN K, YANG G M, et al. HIF-1α regulates Cx40-dependent vasodilatation following hemorrhagic shock in rats[J]. Am J Transl Res, 2017, 9(3): 1277-1286.
[7]DUAN C Y, CAO Z Z, TANG F Q, et al. MiRNA-mRNA crosstalk in myocardial ischemia induced by calcified aortic valve stenosis[J]. Aging (Albany NY), 2019, 11(2): 448-466. DOI:10.18632/aging.101751.
[8]TANG X Q, CHEN X F, CHEN H Z, et al. Mitochondrial sirtuins in cardiometabolic diseases[J]. Clin Sci, 2017, 131(16): 2063-2078. DOI:10.1042/CS20160685.
[9]SHIN H W, SHINOTSUKA C, TORII S, et al. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p[J]. J Biochem, 1997, 122(3): 525-530. DOI:10.1093/oxfordjournals. jbchem.a021784.
[10]ADACHI Y, IIJIMA M, SESAKI H. An unstructured loop that is critical for interactions of the stalk domain of Drp1 with saturated phosphatidic acid[J]. Small GTPases, 2018, 9(6): 472-479. DOI:10.1080/21541248.2017.1321614.
[11]NISHIMURA A, SHIMAUCHI T, TANAKA T, et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence[J]. Sci Signal, 2018, 11(556): eaat5185. DOI:10.1126/scisignal. aat5185.
[12]BARDAI F H, ORDONEZ D G, BAILEY R M, et al. Lrrk promotes tau neurotoxicity through dysregulation of actin and mitochondrial dynamics[J]. PLoS Biol, 2018, 16(12): e2006265. DOI:10.1371/journal.pbio.2006265.
[13]REHMAN J, ZHANG H J, TOTH P T, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer[J]. FASEB J, 2012, 26(5): 2175-2186. DOI:10.1096/fj.11- 196543.
[14]ZHAO J, ZHANG J, YU M, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells[J]. Oncogene, 2013, 32(40): 4814-4824. DOI:10.1038/onc.2012.494.
[15]HAGENBUCHNER J, KUZNETSOV A V, OBEXER P, et al. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery[J]. Oncogene, 2013, 32(40): 4748-4757. DOI:10. 1038/onc.2012.500.
[16]SONG Y, LI T, LIU Z G, et al. Inhibition of Drp1 after traumatic brain injury provides brain protection and improves behavioral performance in rats[J]. Chem Biol Interact, 2019, 304: 173-185. DOI:10.1016/j.cbi.2019.03.013.
[17]ZHANG L X, MA C, WANG X Y, et al. Lipopolysaccharide-induced proliferation and glycolysis in airway smooth muscle cells via activation of Drp1[J]. J Cell Physiol, 2019, 234(6): 9255-9263. DOI:10.1002/jcp.27605.
[18]SEIDKHANI-NAHAL A, ALLAMEH A, SOLEIMANI M. Antioxidant and reactive oxygen species scavenging properties of cellular albumin in HepG2 cells is mediated by the glutathione redox system[J]. Biotechnol Appl Biochem, 2019, 66(2): 163-171. DOI:10.1002/bab.1708.
[19]SIMEUNOVIC D, ODANOVIC N, PLJESA-ERCEGOVAC M, et al. Glutathione transferase P1 polymorphism might be a risk determinant in heart failure[J]. Dis Markers, 2019, 2019: 6984845. DOI:10.1155/2019/6984845.
[20]KIM K Y, HWANG S K, PARK S Y, et al. L-Serine protects mouse hippocampal neuronal HT22 cells against oxidative stress-mediated mitochondrial damage and apoptotic cell death[J]. Free Radic Biol Med, 2019, 141: 447-460. DOI:10.1016/j. freeradbiomed.2019.07.018.
[21]ZHAN L, LI R, SUN Y H, et al. Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain[J]. Neuroreport, 2018, 29(15): 1275-1281. DOI:10.1097/ WNR.0000000000001105.

相似文献/References:

[1]周帅,蒋理,程崇杰,等.载脂蛋白E对星形胶质细胞缺氧性损伤的保护作用[J].第三军医大学学报,2012,34(20):2067.
 Zhou Shuai,Jiang Li,Cheng Chongjie,et al.Apolipoprotein E protects hypoxic injuried astrocytes in vitro[J].J Third Mil Med Univ,2012,34(01):2067.
[2]生宝亮,徐刚,陈德伟,等.大鼠实验性高原肺水肿中T-AOC、MDA、SOD、CAT和IL-6的表达[J].第三军医大学学报,2012,34(23):2364.
 Sheng Baoliang,Xu Gang,Chen Dewei,et al.T-AOC,MDA,SOD,CAT and IL-6 levels in rat pulmonary edema induced by hypobaric hypoxia[J].J Third Mil Med Univ,2012,34(01):2364.
[3]邹哲华,陶陶,徐坚,等.大鼠大脑皮层神经元缺氧后细胞凋亡情况的动态观察[J].第三军医大学学报,2012,34(24):2489.
 Zou Zhehua,Tao Tao,Xu Jian,et al.Dynamic changes of apoptosis in rat cerebral cortex neurons after hypoxia[J].J Third Mil Med Univ,2012,34(01):2489.
[4]魏勇,顾健腾,鲁开智,等.瑞芬太尼对肝细胞缺氧复氧损伤保护作用的机制研究[J].第三军医大学学报,2007,29(20):1976.
 WEI Yong,GU Jian-teng,LU Kai-zhi,et al.Remifentanyl protects hepatocytes against anoxia-reoxygenation injury[J].J Third Mil Med Univ,2007,29(01):1976.
[5]杨兆瑞,吴晴,陈嘉薇,等.HIF-1α、JNK1、P-gp、MRP1和LRP蛋白在胃癌中的表达与临床病理及预后的关系[J].第三军医大学学报,2007,29(18):1755.
 YANG Zhao-rui,WU Qing,CHEN Jia-wei,et al.Expressions, clinicopathological features and prognostic significance of HIF-1α, JNK1, P-gp, MRP1 and LRP proteins in human gastric carcinoma[J].J Third Mil Med Univ,2007,29(01):1755.
[6]罗红,高文祥,高钰琪,等.茶多酚预防缺氧大鼠红细胞增多症的实验研究[J].第三军医大学学报,2007,29(14):1381.
 LUO Hong,GAO Wen-xiang,GAO Yu-qi,et al.Protective effects of tea polyphenols on polycythemia induced by chronic hypoxia in rats[J].J Third Mil Med Univ,2007,29(01):1381.
[7]刘茜,吴亚梅,徐玲,等.急性缺氧诱导C57BL/6J小鼠瘦素表达增加[J].第三军医大学学报,2007,29(13):1311.
 LIU Xi,WU Ya-mei,XU Ling,et al.Influence of hypoxia on leptin expression in C57BL/6J mice[J].J Third Mil Med Univ,2007,29(01):1311.
[8]张钢,高钰琪,刘福玉.缺氧对大鼠白细胞粘弹性的影响[J].第三军医大学学报,2008,30(01):46.
 ZHANG Gang,GAO Yu-qi,LIU Fu-yu.Effects of hypoxia on viscoelastic properties of polymorphonuclear leukocyte of rats[J].J Third Mil Med Univ,2008,30(01):46.
[9]陈建,黄缄,高钰琪,等.预缺氧对大鼠低压缺氧性脑损伤保护作用的实验研究[J].第三军医大学学报,2007,29(22):2113.
 CHEN Jian,HUANG Jian,GAO Yu-qi,et al.Protective effects of hypoxia preconditioning on rat brain against hypobaric hypoxia[J].J Third Mil Med Univ,2007,29(01):2113.
[10]吴喜贵,赵延东,阮怀珍.缺氧对大鼠皮层、海马NMDA受体NR1亚单位磷酸化的影响[J].第三军医大学学报,2007,29(18):1742.
 WU Xi-gui,ZHAO Yan-dong,RUAN Huai-zhen.Effect of hypoxia on NR1 subunit of NMDA receptor in rat cortex and hippocampus[J].J Third Mil Med Univ,2007,29(01):1742.

更新日期/Last Update: 2020-01-07