[1]张勇,田跃,郑恢超,等.瞬时受体电位通道 A1 促进盆腔神经损伤小鼠结肠动力恢复的实验研究[J].第三军医大学学报,2019,41(22):2152-2157.
 ZHANG Yong,TIAN Yue,ZHENG Huichao,et al.Transient receptor potential ankyrin 1 promotes recovery of colonic motility following pelvic nerve injury in mice[J].J Third Mil Med Univ,2019,41(22):2152-2157.
点击复制

瞬时受体电位通道 A1 促进盆腔神经损伤小鼠结肠动力恢复的实验研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第22期
页码:
2152-2157
栏目:
基础医学
出版日期:
2019-11-30

文章信息/Info

Title:
Transient receptor potential ankyrin 1 promotes recovery of colonic motility following pelvic nerve injury in mice
作者:
张勇田跃郑恢超戴飞翔史惠文王李童卫东
陆军军医大学(第三军医大学)大坪医院普通外科
Author(s):
ZHANG Yong TIAN Yue ZHENG Huichao DAI Feixiang SHI Huiwen WANG Li TONG Weidong

Department of General Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

关键词:
瞬时受体电位通道A1去神经支配盆腔神经损伤结肠动力姜黄素HC-030031
Keywords:
transient receptor potential ankyrin 1 denervation pelvic nerve injury intestinal motility curcumin HC-030031
分类号:
R329.27; R363.22; R574.62
文献标志码:
A
摘要:

目的 探讨瞬时受体电位通道A1(transient receptor potential ankyrin 1,TRPAl)在去盆腔神经支配(pelvic nerve denervation,PND)小鼠结肠动力适应性恢复中的作用。方法 将108只C57小鼠采用随机数字表法分为两组(n=54):PND模型组、假手术组。两组依据干预措施分别再分为3组(n=18):无干预组、TRPA1激动剂(姜黄素)处理组、TRPA1拮抗剂(HC-030031)处理组。另将30只TRPA1基因敲除小鼠随机分为2组(n=15):PND模型组、假手术组。建立PND小鼠模型,术中盲肠预置管以进行结肠传输试验。结肠传输功能分别在术后第1、3、7天测定。结果 与假手术组相比,PND模型组小鼠术后第1天传输功能显著降低(P<0.001),术后第3天的结肠传输功能有恢复趋势但仍然降低(P=0.040),至第7天,两组传输功能的差异无统计学意义(P=0.073)。经TRPA1激动剂(姜黄素)干预后,与对照组(无干预假手术组)相比,干预后假手术组结肠传输功能明显增强(P<0.001),PND 模型组小鼠术后第1天和第3天的结肠传输功能无差异(P=0.304、0.065),至第7天,PND模型组传输功能显著增高(P=0.001)。相反,TRPA1拮抗剂(HC-030031)干预后,PND模型组与对照组相比,小鼠术后第1、3、7天的结肠传输功能均显著下降(P<0.05),结肠传输功能无恢复趋势。对TRPA1基因敲除小鼠观察到的结果与应用TRPA1拮抗剂的结果一致。免疫组化结果显示:TRPA1表达于小鼠结肠黏膜,小鼠去盆腔神经支配后,TRPA1出现先下降、后逐渐升高的适应性恢复趋势。结论 小鼠去盆腔神经支配后存在结肠动力适应性恢复现象,TRPA1表达于结肠黏膜,可显著促进PND小鼠的结肠动力恢复。

Abstract:

Objective To investigate the role of transient receptor potential ankyrin 1 (TRPA1) in the recovery of colonic motility following pelvic nerve denervation (PND) in mice. MethodsA total of 108 male C57 mice were randomized into PND model group (n=54) and sham operation group (n=54), and in each group, the mice were further randomized into untreated group, TRPA1 agonist (curcumin) treatment group, and TRPA1 antagonist (HC-030031) treatment group. Another 30 male TRPA1 knockout mice were also randomized into PND group (n=15) and sham operation group (n=15). All the mice underwent open surgery for PND by severing the pelvic nerve or received sham operation, and during the operation, a silicone tube was embedded in the cecum near the colon for testing colonic transit function on postoperative days 1, 3, and 7. ResultsCompared with the sham-operated mice, the PND mice showed significantly decreased colonic transit function on postoperative days 1 (P<0.001) and 3 (P=0.040) but had comparable transit function on day 7. Compared with the sham-operated mice without any interventions (control group), curcumin treatment resulted in significantly enhanced colonic transit function in the sham-operated mice (P<0.001), and promoted nearly full recovery of colonic transit function in PND mice on postoperative days 1 (P=0.304 vs control) and 3 (P=0.304 vs control) and even further enhancement on day 7 (P=0.001). In PND mice, treatment with the TRPA1 antagonist HC-030031 significantly lowered colonic transit function (P<0.05) without any signs of recovery. The results of colonic transit test in TRPA1 knockout mice were consistent with those in HC-030031-treated PND mice. The results of immunohistochemistry showed that TRPA1 was expressed in the colonic mucosa of the mice, and PND caused a transient decrease in TRPA1 expression followed by a gradual recovery. ConclusionThe colonic motility shows an adaptive recovery mechanism after PND in mice. TRPA1, which is expressed in the colonic mucosa of mice, can significantly promote colonic motility recovery following PND in mice.

参考文献/References:

[1]DULSKAS A, SMOLSKAS E, KILDUSIENE I, et al. Treatment possibilities for low anterior resection syndrome: a review of the literature[J]. Int J Colorectal Dis, 2018, 33(3): 251-260. DOI:10.1007/s00384-017-2954-x.
[2]LEE W Y, TAKAHASHI T, PAPPAS T, et al. Surgical autonomic denervation results in altered colonic motility: an explanation for low anterior resection syndrome?[J]. Surgery, 2008, 143(6): 778-783. DOI:10.1016/j.surg.2008.03.014.
[3]STEINECK G, SCHMIDT H, ALEVRONTA E, et al. Toward restored bowel health in rectal cancer survivors[J]. Semin Radiat Oncol, 2016, 26(3): 236-250. DOI:10.1016/j.semradonc.2016.03.002.
[4]KEANE C, WELLS C, O’GRADY G, et al. Defining low anterior resection syndrome: a systematic review of the literature[J]. Colorectal Dis, 2017, 19(8): 713-722. DOI: 10.1111/codi.13767.
[5]杨汉勇, 田跃, 童卫东, 等. 去盆腔神经对大鼠结肠动力与结肠黏膜瞬时受体电位通道A1的影响[J]. 中华消化外科杂志, 2015(6): 492-497.
YANG H Y, TIAN Y, TONG W D, et al. Effects of pelvic nerve transection on the colonic motility and the expression of transit receptor potential ankyrin 1 in a rat model[J]. Chin J Dig Surg, 2015(6): 492-497.
[6]戴飞翔, 田跃, 史惠文, 等. 去盆腔神经支配对大鼠远端结肠黏膜瞬时受体电位通道V1表达的影响[J]. 中华消化外科杂志, 2017(5): 514-521.
DAI F X, TIAN Y, SHI H W, et al. Effects of pelvic nerves denervation on the expression of transit receptor potential vanilloid 1 in distalcolonic mucosa of rats[J]. Chin J Dig Surg, 2017(5): 514-521.
[7]戴飞翔. 去盆腔神经支配对大鼠结肠粘膜TRPV1和5-HT4受体表达的影响[D]. 重庆: 第三军医大学, 2017.
DAI F X. Effects of pelvic nerve denervation on expression of TRPV1 and 5-HT4 receptor in the colonic mucosa of rats[D]. Chongqing: Third Military Medical University, 2017.
[8]LEAMY A W, SHUKLA P, MCALEXANDER M A, et al. Curcumin [(E, E)-1, 7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-Dione] activates and desensitizes the nociceptor ion channel TRPA1[J]. Neurosci Lett, 2011, 503(3): 157-162. DOI: 10.1016/j.neulet.2011.07.054.
[9]EID S R, CROWN E D, MOORE E L, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity[J]. Mol Pain, 2008, 4: 48. DOI: 10.1186/1744-8069-4-48.
[10]史惠文, 田跃, 戴飞翔, 等. 去盆腔神经支配小鼠模型的建立[J]. 中华胃肠外科杂志, 2017, 20(5): 560-565. DOI: 10.3760/cma.j.issn.1671-0274.2017.05.017. 
SHI H W, TIAN Y, DAI F X, et al. Establishment of pelvic nerve denervation modal in mice[J]. Chin J Gast Surg, 2017, 20(5): 560-565. DOI: 10.3760/cma.j.issn.1671-0274.2017.05.017.
[11]史惠文. PND小鼠结肠传输功能、直肠敏感性和远端结肠感觉信号分子表达变化[D]. 重庆: 第三军医大学, 2017.
SHI H W. Changes of colonic transit, rectal sensitivity and the expression of signal molecules in the distal colon of mice after pelvic nerve denervation[D]. Chongqing: Third Military Medical University, 2017.
[12]朱金照, 张志坚, 刘建强. 替加色罗对肝硬化大鼠肠传输功能的影响[J]. 胃肠病学和肝病学杂志, 2007, 16(3): 250-252.
ZHU J Z, ZHANG Z J, LIU J Q. The effects of tegaserod on interstinal motility in rats with cirrhosis[J]. Chin J Gastroenterol Hepatol, 2007, 16(3): 250-252.
[13]BRIERLEY S M, HUGHES P A, PAGE A J, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli[J]. Gastroenterology, 2009, 137(6): 2084-2095.e3. DOI: 10.1053/j.gastro.2009.07.048.
[14]NOZAWA K, KAWABATA-SHODA E, DOIHARA H, et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells[J]. Proc Natl Acad Sci U S A, 2009, 106(9): 3408-3413. DOI: 10.1073/pnas.0805323106.
[15]BELLONO N W, BAYRER J R, LEITCH D B, et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways[J]. Cell, 2017, 170(1): 185-198.e16. DOI: 10.1016/j.cell.2017.05.034.
 

相似文献/References:

[1]夏一阳,孙秉庸,王仕军,等.去交感神经支配和地塞米松对急性缺氧家兔软脑膜微血管压的影响[J].第三军医大学学报,1988,10(04):0.[doi:10.16016/j.1000-5404.1988.04.001 ]
 Xia Yiyang,et al.[J].J Third Mil Med Univ,1988,10(22):0.[doi:10.16016/j.1000-5404.1988.04.001 ]

更新日期/Last Update: 2019-11-21