[1]冉一君,王梦蕾,黎梦,等.载IR780靶向纳米粒体外荧光成像及光动力诱导大鼠脉络膜血管内皮细胞凋亡的研究[J].第三军医大学学报,2020,42(01):67-74.
 RAN Yijun,WANG Menglei,LI Meng,et al.In vitro imaging of targeting fluorescent IR780 nanoparticles and their mediated photodynamics in rat choroidal endothelial cells[J].J Third Mil Med Univ,2020,42(01):67-74.
点击复制

载IR780靶向纳米粒体外荧光成像及光动力诱导大鼠脉络膜血管内皮细胞凋亡的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
42卷
期数:
2020年第01期
页码:
67-74
栏目:
基础医学
出版日期:
2020-01-15

文章信息/Info

Title:
In vitro imaging of targeting fluorescent IR780 nanoparticles and their mediated photodynamics in rat choroidal endothelial cells
作者:
冉一君王梦蕾黎梦周希瑗曹阳冉海涛
重庆医科大学附属第二医院:眼科,超声科;重庆医科大学超声影像学研究所,超声分子影像重庆市重点实验室
Author(s):
RAN Yijun WANG Menglei LI Meng ZHOU Xiyuan CAO Yang RAN Haitao

Department of Ophthalmology, Department of Ultrasonography, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010; 2Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400016, China

关键词:
脉膜新生血管PLGA纳米粒血管内皮细胞生长因子受体2荧光成像光动力治疗
Keywords:
choroidal neovascularization PLGA nanoparticles vascular endothelial growth factor receptor 2 fluorescence imaging photodynamic therapy  
分类号:
R944.9; R969.4; R977.6
文献标志码:
A
摘要:

目的制备一种新型载IR780靶向血管内皮生长因子受体2(vascular endothelial growth factor receptor 2,VEGFR2)纳米粒(VEGFR2/IR780/PLGA-NPs),体外评价其物理性质、荧光成像能力、对大鼠脉络膜血管内皮细胞(rat choroid vascular endothelial cells,RCVECs)的寻靶能力及光动力治疗(photodynamic therapy,PDT)效果。 方法采用超声乳化法制备包载IR780的非靶向纳米粒(IR780/PLGA-NPs),运用碳二亚胺法将VEGFR2抗体与纳米粒相连接,最终制备出靶向纳米粒(VEGFR2/IR780/PLGA-NPs);检测其基本特性;运用CCK-8法检测纳米粒的细胞毒性;定量荧光和生物发光成像系统评价纳米粒的荧光成像能力;激光共聚焦与流式细胞术评价靶向组、非靶向组、抗体封闭组纳米粒体外寻靶能力;单线氧荧光探针(singlet oxygen sensor green reagent,SOSG)评估体外光动力治疗效果;流式细胞仪检测靶向激光组、非靶向激光组、单纯激光组纳米粒介导的光动力诱导RCVECs的凋亡比例。结果成功制备出VEGFR2/IR780/PLGA-NPs,不同显微镜下观察呈球形,大小均匀,粒径(273.23±31.55)nm;电位(-8.85±1.60)mV;IR780包封率(87.37±2.44)%。荧光成像结果显示:纳米粒浓度越高,其荧光信号强度越强。CCK-8法检测结果显示纳米粒没有明显的细胞毒性。流式细胞仪检测VEGFR2抗体已成功连接于纳米粒,其连接率为(83.60±4.79)%。激光共聚焦观察发现在靶向组中RCVECs周围的纳米粒明显多于非靶向组和抗体封闭组。流式细胞仪检测发现靶向组纳米粒与细胞连接率为(58.13±1.64)%,明显高于非靶向组(20.64±1.89)%和抗体封闭组(15.12±1.16)%,差异有统计学意义(P<0.05)。经过激光辐照后,随纳米粒浓度增加,体外活性氧产量逐渐增加,具备良好的PDT能力。流式细胞仪检测发现靶向激光组诱导RCVECs凋亡的比例为(82.99±0.98)%,明显高于非靶向激光组(30.75±1.81)%和单纯激光组(7.05±0.96)%,差异有统计学意义(P<0.05)。证实靶向纳米粒具备更好的PDT效果。结论成功制备VEGFR2/IR780/PLGA-NPs,其在体外具有良好的靶向能力,同时可用于荧光成像以及光动力治疗。

Abstract:

ObjectiveTo prepare novel IR780-loaded nanoparticles targeting vascular endothelial growth factor receptor 2 (VEGFR2), and evaluate their physical properties, fluorescence imaging ability, targeting ability to rat choroidal vascular endothelial cells (RCVECs), and the effects of photodynamic therapy (PDT). MethodsThe non-targeting nanoparticles loaded with IR780 (IR780/PLGA-NPs) were prepared by single emulsification. After anti-VEGFR2 antibodies were coupled with nanoparticle by carbodiimide, then the targeting nanoparticles (VEGFR2/IR780/PLGA-NPs) were prepared finally. CCK-8 assay was carried out to detect the cytotoxicity of nanoparticle; Quantitative fluorescence and bioluminescence imaging system was performed to evaluate the fluorescence imaging ability of the nanoparticles in vitro. Laser confocal and flow cytometry were employed to evaluate the connectivity and in vitro targeting ability of the targeted group, non-targeted group and closed receptor group. The effect of PDT was determined by singlet oxygen sensor green reagent (SOSG); Flow cytometry was applied to detect the percentage of apoptotic RCVECs in the targeted laser group, non-targeted laser group and simple laser irradiated group after nanoparticle-mediated PDT. ResultsThe nanoparticles VEGFR2/IR780/PLGA-NPs were successfully prepared, and presented spherical in shape and uniform in size, in a particle size of 273.23±31.55 nm, at a potential of -8.85±1.60 mV, with an encapsulation efficiency of (87.37±2.44)% to IR780. Fluorescence imaging showed that the fluorescence signal intensity was increased with the increment of concentration of the nanoparticles. The result of CCK-8 assay indicated that there was no obvious cytotoxicity of the nanoparticles. Flow cytometry displayed that VEGFR2 antibodies were successfully attached to the nanoparticles, with a ratio of (83.60±4.79)%. Laser confocal microscopy demonstrated that there were more nanoparticles around the RCVECs in the targeted group than the other 2 groups. Flow cytometry also showed that the connectivity of nanoparticles to RCVECs was (58.13±1.64)% in the targeted group, which was significantly higher than that of the non-targeted group [(20.64±1.89)%, P<0.05] and the closed receptor group [(15.12±1.16)%, P<0.05]. After irradiated with 808 nm laser, the production of reactive oxygen species was gradually increased with the increment of nanoparticles, which means the nanoparticles having good PDT ability. Flow cytometry indicated that the apoptotic rate of RCVECs was (82.99±0.98)% in the targeted laser group, obviously higher than those of the non-targeted laser group [(30.75±1.81)%, P<0.05] and the simple laser irradiated group [(7.05±0.96)%, P<0.05], suggesting sound PDT effect of the nanoparticles. ConclusionThe targeting nanoparticles VEGFR2/IR780/PLGA-NPs are successfully prepared. They have good targeting ability in vitro, and could be used for fluorescence imaging and PDT.

参考文献/References:

[1]WONG T, CHAKRAVARTHY U, KLEIN R, et al. The natural history and prognosis of neovascular age-related macular degeneration[J]. Ophthalmology, 2008, 115(1): 116-126.e1. DOI:10.1016/j.ophtha.2007.03.008.
[2]SEDDON J M, CHEN C A. The epidemiology of age-related macular degeneration[J]. Int Ophthalmol Clin, 2004, 44(4): 17-39.
[3]王皓,周希瑗,刘苏,等.重庆市农村地区50岁及以上土家族人群年龄相关性黄斑变性的流行病学调查[J].中华眼科医学杂志(电子版),2018,8(4):157-162. DOI:10.3877/cma.j.issn.2095-2007.2018.01.003.
WANG H, ZHOU X Y, LIU S, et al. Epidemiological investigation of age-related macular degeneration of over 50 years old Tuijia ethnic group in Chongqing rural district[J].Chin J Ophthalmol, 2018, 8(4):157-162. DOI:10.3877/cma.j.issn.2095-2007.2018.01.003.
[4]NOWAK J Z. AMD: the retinal disease with an unprecised etiopathogenesis: in search of effective therapeutics[J]. Acta Pol Pharm, 2014, 71(6): 900-916.
[5]火成栋, 张文芳, 杨义, 等. 眼科辅助检查在年龄相关性黄斑变性中的应用[J]. 国际眼科杂志, 2018, 18(1): 84-88. DOI:10.3980/j.issn.1672-5123.2018.1.19.
HUO C D, ZHANG W F, YANG Y, et al. Application of ophthalmic methods in age-related macular degeneration[J]. Int Eye Sci, 2018, 18(1): 84-88. DOI:10.3980/j.issn.1672-5123.2018.1.19.
[6]ISHIKAWA M, JIN D, SAWADA Y, et al. Future therapies of wet age-related macular degeneration[J]. J Ophthalmol, 2015, 2015: 138070. DOI:10.1155/2015/138070.
[7]张卯年.关注抗血管内皮生长因子药物治疗眼部新生血管疾病的潜在风险[J].中华眼底病杂志,2010,26(1):2-5. DOI:10.3760/cma.j.issn.1005-1015.2010.01.01.
ZHANG M N. Pay attention to the potential risks of anti-vascular endothelial growth factor therapy for neovascular disease[J].Chin J Ocular Fundus Dis,2010,26(1): 2-5. DOI:10.3760/cma.j.issn.1005-1015.2010.01.01.
[8]JOSEFSEN L B, BOYLE R W. Photodynamic therapy and the development of metal-based photosensitisers[J]. Metol Based Drugs, 2008, 2008: 1-23. DOI:10.1155/2008/276109.
[9]SMRETSCHNIG E, HAGEN S, GLITTENBERG C, et al. Intravitreal anti-vascular endothelial growth factor combined with half-fluence photodynamic therapy for choroidal neovascularization in chronic central serous chorioretinopathy[J]. Eye (Lond), 2016, 30(6): 805-811. DOI:10.1038/eye.2016.41.
[10]WITMER A N, VRENSEN G F, VAN NOORDEN C J, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1): 1-29.
[11]ZHANG L, WANG D, YANG K, et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation[J]. Adv Sci (Weinh), 2018,5(8):1800049.DOI:10.1002/advs.201800049.
[12]CHEN Y L, LIU F Q, GUO Y, et al. PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles[J]. Biomater Sci, 2018, 6(8): 2130-2143. DOI:10.1039/c8bm00213d.
[13]HUANG J, LIU F Q, HAN X X, et al. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics[J]. Theranostics,2018,8(22):6178-6194.DOI:10.7150/thno.29569.
[14]CHEN Q W, WEN J, LI H J, et al. Recent advances in different modal imaging-guided photothermal therapy[J]. Biomaterials,2016,106:144-166.DOI:10.1016/j.biomaterials.2016.08.022.
[15]胡军平, 杨华, 李国栋, 等. 光动力疗法联合玻璃体内注射雷珠单抗治疗湿性年龄相关性黄斑变性后黄斑区中心视野的改变[J]. 眼科新进展, 2015, 35(11): 1039-1043. DOI:10.13389/j.cnki.rao.2015.0284.
HU J P, YANG H, LI G D, et al. Macular visual field changes after combined photodynamic therapy and intravitreal injection of ranibizumab for neovacular age-related macular degeneration[J]. Recent Adv Ophthalmol, 2015, 35(11): 1039-1043. DOI:10.13389/j.cnki.rao.2015.0284.
[16]TOZER K, ROLLER A B, CHONG L P, et al. Combination therapy for neovascular age-related macular degeneration refractory to anti-vascular endothelial growth factor agents[J]. Ophthalmology,2013,120(10):2029-2034.DOI:10.1016/j.ophtha.2013.03.016.
[17]YUAN A, QIU X F, TANG X L, et al. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy[J]. Biomaterials, 2015, 51: 184-193. DOI:10.1016/j.biomaterials.2015.01.069.
[18]KIM J, KIM T E, KIM J A, et al. Intravitreal tanibirumab, a fully human monoclonal antibody against vascular endothelial growth factor receptor 2, partially suppresses and regresses laser-induced choroidal neovascularization in a rat model[J]. J Ocul Pharmacol Ther, 2014, 30(10): 847-853. DOI:10.1089/jop.2014.0021.
[19]KANG S, PARK K C, YANG K J, et al. Effect of cediranib, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, in a mouse model of choroidal neovascularization[J]. Clin Exp Ophthalmol, 2013, 41(1): 63-72.DOI:10.1111/j.1442-9071.2012.02813.x.

相似文献/References:

[1]陈瑜莉,刘逢秋,过源,等.载酞菁锌靶向新生血管相变纳米粒体外超声显像与光热治疗实验研究[J].第三军医大学学报,2018,40(09):761.
 CHEN Yuli,LIU Fengqiu,GUO Yuan,et al.Ultrasound imaging and photothermal therapy of ZnPc loaded angiogenesis-targeting nanoparticles in vitro[J].J Third Mil Med Univ,2018,40(01):761.

更新日期/Last Update: 2020-01-07