[1]李朝富,王艳,赵然尊,等.骨髓间充质干细胞源外泌体调控心肌微血管内皮细胞增殖的机制研究[J].第三军医大学学报,2019,41(23):2313-2321.
 LI Chaofu,WANG Yan,ZHAO Ranzun,et al.Mechanism of exosomes released from bone marrow stem cells regulating proliferation of cardiac microvascular endothelial cells[J].J Third Mil Med Univ,2019,41(23):2313-2321.
点击复制

骨髓间充质干细胞源外泌体调控心肌微血管内皮细胞增殖的机制研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第23期
页码:
2313-2321
栏目:
基础医学
出版日期:
2019-12-15

文章信息/Info

Title:
Mechanism of exosomes released from bone marrow stem cells regulating proliferation of cardiac microvascular endothelial cells
作者:
李朝富王艳赵然尊龙仙萍张巍陈攀科石蓓
563000 贵州 遵义,遵义医科大学附属医院心内科
Author(s):
LI Chaofu WANG Yan ZHAO Ranzun LONG Xianping ZHANG Wei CHEN Panke SHI Bei

Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, 563000, China

关键词:
骨髓间充质干细胞外泌体心肌微血管内皮细胞细胞增殖细胞分化
Keywords:
bone marrow mesenchymal stem cells exosomes cardiac microvascular endothelial cells cell proliferation cell differentiation
分类号:
R322.11; R329.21; R329.28
文献标志码:
A
摘要:

目的探讨缺氧预处理骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)来源的外泌体(exosomes)调控心肌微血管内皮细胞(cardiac microvascular endothelial cells,CMVECs)增殖的机制。方法采用酶消化法联合差速贴壁法培养大鼠CMVECs,超高速离心法提取常氧及缺氧预处理的BMSCs exosomes,免疫荧光检测CMVECs内化exosomes情况。实验分为4组(n=3):①正常对照组(Control),②去除exosomes后的BMSCs条件培养基的空白对照组(Free-Exos),③常氧外泌体组(Nor-Exos),④缺氧外泌体组(Hypoxia-Exos,外泌体浓度为400 μg/μL,与CMVECs共培养24 h)。采用Edu法及流式细胞术细胞周期法检测细胞增殖能力,qRT-PCR检测exosomes和CMVECs各组中miR-214表达变化。抑制exosomes中miR-214后,qRT-PCR检测exosomes及CMVECs中miR-214的表达变化,并观察细胞增殖情况。结果经透射电镜及免疫印迹法验证提取的囊泡状物质为外泌体,并通过免疫荧光分析发现DiI标记的exosomes可被CMVECs内化;Edu及细胞周期结果显示,Hypoxia-Exos组较Nor-Exos组具有更强的促CMVECs增殖能力(P<0.05)。qRT-PCR结果显示,与Nor-Exos组比较,Hypoxic-Exos组中miR-214表达显著升高(P<0.05)。下调Hypoxia-Exos中的miR-214表达后,Edu及细胞周期结果显示Hypoxia-Exos组的促进细胞增殖能力被部分阻断(P<0.05)。结论 缺氧预处理骨髓间充质干细胞源exosomes可能通过传递miR-214促进CMVECs增殖效应。

Abstract:

ObjectiveTo investigate the mechanism of exosomes released from bone marrow stem cells (BMSCs) on the proliferation in cardiac microvascular endothelial cells (CMVECs) by miR-214 regulation. MethodsRat CMVECs were cultured by enzyme digestion combined with differential adherence. Ultra-high speed centrifugation was used to extract exosomes from normal-oxygen or hypoxic-pretreated BMSCs. Immunofluorescence assay was employed to track the internalization of exosomes in CMVECs. Then the BMSCs were divided into 4 groups: ①control group, ②free exosomes (Free-Exos), ③normal exosomes (Nor-Exos), and ④hypoxia exosomes (Hypoxia-Exos, 400 μg/μL exosome co-cultured with CMVECs for 24 h). The cell proliferation was measured by Edu assay and flow cytometry. The miR-214 levels in exosomes or CMVECs were assessed using qRT-PCR, and the levels were measured again after miR-214 in exosomes were inhibited. And the cell proliferation was observed again by the above methods. Finally, after liposome 2000 was employed to transfect miR-214 mimics into CMVECs, the cell proliferation ability was measured by the Edu assay. ResultsTransmission electron microscopy and immunoblotting indicated that the extracted vesicles were exosomes. Immunofluorescence assay revealed that DiI-labeled exosomes could be internalized by CMVECs. Edu assay and cell cycle assay showed that Hypoxic-Exos had stronger potential to promote cell proliferation than Nor-Exos in CMVECs. qRT-PCR results showed that miR-214 was highly expressed in Hypoxic-Exos compared with Nor-Exos (P<0.05). In CMVECs, the expression of miR-214 in Hypoxia-Exos group was significantly higher than that in Control group and Nor-Exos group (P<0.05). In addition, Hypoxia-Exos’s ability to promote cell proliferation was partially blocked by down-regulation of miR-214 in Hypoxia-Exos. However, after overexpression of mir-214 in CMVECs, cell proliferation ability was enhanced. ConclusionExosomes released from hypoxic-pretreated BMSCs can promote CMVECs proliferation by medicating miR-214.

参考文献/References:

[1]DEZ VILLANUEVA P, SANZ-RUIZ R, NEZ GARCA A, et al. Functional multipotency of stem cells: What do we need from them in the heart?[J]. Stem Cells Int, 2012, 2012:817364. DOI: 10.1155/2012/817364.
[2]YU F, LIU Y Z, XU J M. Pro-BDNF contributes to hypoxia/reoxygenation injury in myocardial microvascular endothelial cells: roles of receptors p75NTR and sortilin and activation of JNK and caspase 3[J]. Oxid Med Cell Longev, 2018, 2018: 3091424. DOI:10.1155/2018/3091424.
[3]SEILER C, STOLLER M, PITT B, et al. The human coronary collateral circulation: development and clinical importance[J]. Eur Heart J, 2013, 34(34): 2674-2682. DOI:10.1093/eurheartj/eht195.
[4]SHAO L B, ZHANG Y, LAN B B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017, 2017: 4150705. DOI:10.1155/2017/4150705.
[5]XIAO K, THUM T. Exosomal microRNAs released by pediatric cardiac progenitor cells[J]. Circ Res, 2017, 120(4): 607-609. DOI:10.1161/CIRCRESAHA.117.310443.
[6]LIU X L, LI Q, NIU X, et al. Exosomes secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells prevent osteonecrosis of the femoral head by promoting angiogenesis[J]. Int J Biol Sci, 2017, 13(2): 232-244. DOI:10.7150/ijbs.16951.
[7]SHABBIR A, COX A, RODRIGUEZ-MENOCAL L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro[J]. Stem Cells Dev, 2015, 24(14): 1635-1647. DOI:10.1089/scd.2014.0316.
[8]SLUIJTER J P, VERHAGE V, DEDDENS J C, et al. Microvesicles and exosomes for intracardiac communication[J]. Cardiovasc Res, 2014, 102(2): 302-311. DOI:10.1093/cvr/cvu022.
[9]GRAY W D, FRENCH K M, GHOSH-CHOUDHARY S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology[J]. Circ Res, 2015, 116(2): 255-263. DOI:10.1161/CIRCRESAHA.116.304360.
[10]WANG Y, ZHAO R Z, LIU D B, et al. Exosomes derived from miR-214-enriched bone marrow-derived mesenchymal stem cells regulate oxidative damage in cardiac stem cells by targeting CaMKⅡ[J]. Oxid Med Cell Longev, 2018, 2018: 4971261. DOI:10.1155/2018/4971261.
[11]WEIR R A, MURPHY C A, PETRIE C J, et al. Micro-vascular obstruction remains a portent of adverse remodeling in optimally treated patients with left ventricular systolic dysfunction after acute myocardial infarction[J]. Circ Cardiovasc Imaging, 2010, 3(4): 360-367. DOI:10.1161/CIRCIMAGING.109.897439.
[12]HEWSON C, CAPRARO D, BURDACH J, et al. Extra-cellular vesicle associated long non-coding RNAs functionally enhance cell viability[J]. Noncoding RNA Res, 2016, 1(1): 3-11. DOI:10.1016/j.ncrna.2016.06.001.
[13]RIBEIRO-RODRIGUES T M, LAUNDOS T L, PEREIRA-CARVALHO R, et al. Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis[J]. Cardiovasc Res, 2017, 113(11): 1338-1350. DOI:10.1093/cvr/cvx118.
[14]BLONDIAUX E, PIDIAL L, AUTRET G, et al. Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction[J]. J Tissue Eng Regen Med, 2017, 11(12): 3417-3427. DOI:10.1002/term.2255.
[15]ZHANG W, ZHOU X J, ZHANG H, et al. Extracellular vesicles in diagnosis and therapy of kidney diseases[J]. Am J Physiol Renal Physiol, 2016, 311(5): F844-F851. DOI:10.1152/ajprenal.00429.2016.
[16]CZERNEK L, DCHLER M. Functions of cancer-derived extracellular vesicles in immunosuppression[J]. Arch Immunol Ther Exp (Warsz), 2017, 65(4): 311-323. DOI:10.1007/s00005-016-0453-3.
[17]GAJOS-MICHNIEWICZ A, CZYZ M. Role of miRNAs in melanoma metastasis[J]. Cancers (Basel), 2019, 11(3): E326. DOI:10.3390/cancers11030326.
[18]XIAO T T, ZHANG W W, JIAO B, et al. The role of exosomes in the pathogenesis of Alzheimer’ disease[J]. Transl Neurodegener, 2017, 6: 3. DOI:10.1186/s40035-017-0072-x.
[19]LAI R C, ARSLAN F, LEE M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4(3): 214-222. DOI:10.1016/j.scr.2009.12.003.
[20]KREKE M, SMITH R R, MARBN L, et al. Cardiospheres and cardiosphere-derived cells as therapeutic agents following myocardial infarction[J]. Expert Rev Cardiovasc Ther, 2012, 10(9): 1185-1194. DOI:10.1586/erc.12.102.
[21]KISHORE R, KHAN M. Cardiac cell-derived exosomes: changing face of regenerative biology[J]. Eur Heart J, 2017, 38(3): 212-215. DOI:10.1093/eurheartj/ehw324.
[22]JIANG X C, GAO J Q. Exosomes as novel bio-carriers for gene and drug delivery[J]. Int J Pharm, 2017, 521(1/2): 167-175. DOI:10.1016/j.ijpharm.2017.02.038.
[23]HELWA I, CAI J W, DREWRY M D, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents[J]. PLoS ONE, 2017, 12(1): e0170628. DOI:10.1371/journal.pone.0170628.
[24]ZLOTOGORSKI-HURVITZ A, DAYAN D, CHAUSHU G, et al. Human saliva-derived exosomes: comparing methods of isolation[J]. J Histochem Cytochem, 2015, 63(3): 181-189. DOI:10.1369/0022155414564219.
[25]BIAN S Y, ZHANG L P, DUAN L F, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model[J]. J Mol Med, 2014, 92(4): 387-397. DOI:10.1007/s00109-013-1110-5.
[26]FENG Y L, HUANG W, WANI M, et al. Ischemic pre-conditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22[J]. PLoS ONE, 2014, 9(2): e88685. DOI:10.1371/journal.pone.0088685.
[27]LU H Q, LIANG C, HE Z Q, et al. Circulating miR-214 is associated with the severity of coronary artery disease[J]. J Geriatr Cardiol, 2013, 10(1): 34-38. DOI:10.3969/j.issn.1671-5411.2013.01.007.

相似文献/References:

[1]李静,沈宜,杨麟,等.小鼠肝癌细胞(H22)源外泌体的体内抗肝癌作用研究[J].第三军医大学学报,2008,30(19):1836.
 LI Jing,SHEN Yi,YANG Lin,et al.Antitumor effects of exosomes derived from a mouse hepatoma carcinoma cell line H22[J].J Third Mil Med Univ,2008,30(23):1836.
[2]郝海珍,郭铁,余丹.脂肪间充质干细胞来源外泌体对脑缺血再灌注大鼠神经元凋亡及炎症因子影响[J].第三军医大学学报,2019,41(17):1656.
 HAO Haizhen,GUO Tie,YU Dan.Effect of exosomes derived from adipose-derived mesenchymal stem cells on neuron apoptosis and inflammatory cytokines in a rat model of cerebral ischemia reperfusion[J].J Third Mil Med Univ,2019,41(23):1656.

更新日期/Last Update: 2019-12-09