[1]刘芳,刘耀,詹世鹏,等.基于网络药理学探讨藏药诃子治疗类风湿性关节炎的作用机制[J].第三军医大学学报,2019,41(22):2238-2245.
 LIU Fang,LIU Yao,ZHAN Shipeng,et al.Mechanism of Tibetan medicine Terminalia Chebula Retz in rheumatoid arthritis: a study based on network pharmacology [J].J Third Mil Med Univ,2019,41(22):2238-2245.
点击复制

基于网络药理学探讨藏药诃子治疗类风湿性关节炎的作用机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第22期
页码:
2238-2245
栏目:
临床医学
出版日期:
2019-11-30

文章信息/Info

Title:
Mechanism of Tibetan medicine Terminalia Chebula Retz in rheumatoid arthritis: a study based on network pharmacology
 
作者:
刘芳刘耀詹世鹏吕军喻明洁夏培元
陆军军医大学(第三军医大学)第一附属医院药剂科;陆军军医大学(第三军医大学)大坪医院药剂科
Author(s):
LIU Fang LIU Yao ZHAN Shipeng LYU Jun YU Mingjie XIA Peiyuan

Department of Pharmacy, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038; Department of Pharmacy, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China

关键词:
藏药诃子网络药理学类风湿性关节炎活性成分靶点
Keywords:
Tibetan drugs Terminalia chebula Retz network pharmacology rheumatoid arthritis active components targets
分类号:
R285.5; R319; R593.22
文献标志码:
A
摘要:

目的 运用网络药理学方法探讨藏药诃子治疗类风湿性关节炎(rheumatoid arthritis, RA)的活性成分-靶点及相关通路。方法 利用中药系统药理学技术平台(TCMSP)查找诃子中的活性成分,利用反向分子对接服务器(DRAR-CPI)对活性成分的药理作用靶点进行预测,从美国国家生物技术信息中心(NCBI)数据库和Genecards数据库获取类风湿性关节炎的相关靶点基因;借助STRING平台构建靶蛋白相互作用网络,并通过生物学信息注释数据库(DAVID)对靶点基因本体(GO)生物过程及京都基因与基因组百科全书(KEGG)中的代谢通路进行分析,随后通过Cytoscape 3.6.1软件构建诃子活性成分-靶点-通路网络。结果通过TCMSP数据库和文献补充,从诃子中共筛选出10个活性成分,主要为酚酸类和生物碱两大类。经DRAR-CPI对接预测,共预测出47个RA靶点,其中TP53、PTGS2、TNF、IL-6、HSP90B等为关键靶点。GO富集分析和KEGG通路分析结果显示:诃子主要参与凋亡、炎症抑制以及免疫调节等生物过程,通过调控细胞凋亡和NLR、TLR、JAK-STAT和MAPK信号通路等为主的54条信号通路发挥多途径治疗RA的作用。结论 诃子中的酚酸类成分(如鞣花酸)和生物碱成分(如玫瑰树碱)可能参与细胞凋亡、炎症、免疫调节等生物学过程,调控细胞凋亡通路和TLR、JAK-STAT和MAPK信号通路,发挥治疗RA的作用。

Abstract:
Objective To investigate the mechanism of Tibetan herb Terminalia chebula Retz in the treatment of rheumatoid arthritis (RA) by using network pharmacology. MethodsThe active components and relative targets of Terminalia chebula Retz were searched by using TCMSP database; the potential targets were predicted by using DRAR-CPI platform; the relevant target genes for RA were obtained from NCBI database and Genecards database. Then the protein-protein interaction network was conducted by STRING platform, the enriched gene ontology (GO) and metabolic pathways of the Kyoto encyclopedia of genes and genomes (KEGG) were analyzed through the DAVID database. The active components-targets-pathway network was created by Cytoscape 3.6.1 software. ResultsAccording to the searching results of TCMSP database as well as literature supplement, 10 active compounds were screen out as the main compounds of Terminalia chebula Retz. They are mainly phenolic acids and alkaloids. A total of 47 key targets including TP53, PTGS2, TNF, IL-6 and HSP90B had been predicted as Terminalia chebula Retz related RA targets; GO and KEGG analyses showed that active compounds of Terminalia chebula Retz may be involved in the processes of inflammation suppression, immune-modification and apoptosis, and regulate 54 relative KEGG pathways, such as apoptosis, NOD like receptor (NLR) signal pathway, Toll-like receptor (TRL) signal pathway, JAK-STAT signal pathway and MAPK signal pathway in the treatment of RA. ConclusionPhenolic acids (such as ellagic acid) and alkaloids (such as ellipticine) isolated from Terminalia chebula Retz can treat RA by being involued in the processes of apoptosis, inflammation, and immune-modification, and through regulating apoptosis pathway, NLR signal pathway, TLR signal pathway, JAK-STAT signal pathway and MAPK signal pathway.
 

参考文献/References:

[1]SMOLEN J S, ALETAHA D, MCINNES I B. Rheumatoid arthritis[J]. Lancet, 2016, 388(10055): 2023-2038. DOI:10.1016/s0140-6736(16)30173-8.
[2]Global Burden of Disease Study Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J].Lancet, 2015, 386(9995): 743-800. DOI:10.1016/S0140-6736(15)60692-4.
[3]WANG G, XU H J, MU R. Management of rheumatoid arthritis in People’s republic of China——focus on tocilizumab and patient considerations[J]. Int J Gen Med, 2015: 187. DOI:10.2147/ijgm.s81633.
[4]卓玛措. 藏医对类风湿性关节炎的病理机制探讨[J]. 中国民族医药杂志, 2016, 22(8): 45-46. DOI:10.16041/j.cnki.cn15-1175.2016.08.031.
ZHUO M C. Pathological mechanism of Tibetan medicine on rheumatoid arthritis [J]. J Med Pharm Chin Minor, 2016, 22(8): 45-46. DOI:10.16041/j.cnki.cn15-1175.2016.08.031.
[5]安太措, 青羊尖措. 藏药浴结合藏药外敷治疗类风湿性关节炎56例临床研究[J]. 中国民族医药杂志, 2017, 23(6): 10-11. DOI:10.16041/j.cnki.cn15-1175.2017.06.006.
AN T C, QING Y J C. Clinical study on 56 cases of rheumatoid arthritis treated by Tibetan medicine bath and external application of Tibetan medicine [J]. J Med Pharm Chin Minor, 2017, 23(6): 10-11. DOI:10.16041/j.cnki.cn15-1175.2017.06.006.
[6]张媛媛, 曾慧婷, 袁源见, 等. 藏药诃子的化学成分与药理活性研究进展[J]. 中国药房, 2018, 29(14): 2002-2006.
ZHANG Y Y, ZENG H T, YUAN Y J, et al. Research progress on chemical constituents and pharmacological activities of Terminalia chebula[J]. China Pharm, 2018, 29(14): 2002-2006.
[7]ZHAO Y L, LIU F, LIU Y, et al. Anti-arthritic effect of chebulanin on collagen-induced arthritis in mice[J]. PLoS ONE, 2015, 10(9): e0139052. DOI:10.1371/journal.pone.0139052.
[8]刘芳, 张璞, 赵鸿燕, 等. 诃子抗类风湿性关节炎的药效物质基础及药理作用研究[J]. 中国药房, 2017, 28(25): 3575-3578.
LIU F, ZHANG P, ZHAO H Y, et al. Study on the pharmacodynamic substances and pharmacological action of Terminalia chebula against rheumatoid arthritis [J]. China Pharm, 2017, 28(25): 3575-3578.
[9]李学军, 许海玉. 网络药理学与中药研究[J]. 药学学报, 2018, 53(9): 1385-1386.
LI X J, XU H Y. Network pharmacology and traditional Chinese medicine research[J]. Acta Pharm Sin, 2018, 53(9): 1385-1386.
[10]杨释岑, 刘志强, 刘和波, 等. 利用网络药理学方法研究交泰丸治疗糖尿病的作用机制[J]. 中国药房, 2018, 29(19): 2656-2661.
YANG S C, LIU Z Q, LIU H B, et al. Study on the mechanism of jiaotai pills in the treatment of diabetes by using network pharmacology[J]. China Pharm, 2018, 29(19): 2656-2661.
[11]唐策, 文检, 杨娟, 等. 藏药翼首草抗类风湿性关节炎活性成分靶点的网络药理学研究[J]. 中国药房, 2017, 28(19): 2666-2670.
TANG C, WEN J, YANG J, et al. Study on the active components targets of Tibetan medicine Pterocephalus hookeri in anti-rheumatoid arthritis based on network pharmacology[J]. China Pharm, 2017, 28(19): 2666-2670.
[12]ZHANG R Z, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine: review and assessment[J]. Front Pharmacol, 2019, 10: 123. DOI:10.3389/fphar.2019.00123.
[13]SIREERATAWONG S, JAIJOY K, KHONSUNG P, et al. Analgesic and anti-inflammatory activities of the water extract from Terminalia chebula Rezt[J]. Afr J Trad Compl Alt Med, 2015, 11(6): 77. DOI:10.4314/ajtcam.v11i6.8.
[14]SEO J B, JEONG J Y, PARK J Y, et al. Anti-arthritic and analgesic effect of NDI10218, a standardized extract of Terminalia chebula, on arthritis and pain model[J]. Biomol Ther (Seoul), 2012, 20(1): 104-112. DOI:10.4062/biomolther.2012.20.1.104.
[15]HWANG D, KIM W U. Rheumatoid arthritis: Modelling cytokine signalling networks[J]. Nat Rev Rheumatol, 2017, 13(1): 5-6. DOI:10.1038/nrrheum.2016.194.
[16]BUI V L, BRAHN E. Cytokine targeting in rheumatoid arthritis[J]. Clin Immunol, 2018: S1521-S6616(18)30180-3. DOI:10.1016/j.clim.2018.04.001.
[17]刘丽丽, 毛艳艳, 高柳滨. 类风湿关节炎全球药物研发状况分析[J]. 科技导报, 2016, 34(24): 44-55.
LIU L L, MAO Y Y, GAO L B. An analysis on global drug development status of rheumatoid arthritis[J]. Sci Technol Rev, 2016, 34(24): 44-55.
[18]MURPHY G, KNUPER V, ATKINSON S, et al. Matrix metalloproteinases in arthritic disease[J]. Arthritis Res, 2002, 4(Suppl 3): S39-S49. DOI:10.1186/ar572.
[19]MALYSHEVA I E, TOPCHIEVA L V, BARYSHEVA O Y, et al. The level of cytokines and expression of caspase genes in rheumatoid arthritis[J]. Dokl Biochem Biophys, 2016, 468(1): 226-228. DOI:10.1134/S1607672916030194.
[20]HAYER S, PUNDT N, PETERS M A, et al. PI3Kgamma regulates cartilage damage in chronic inflammatory arthritis[J]. FASEB J, 2009, 23(12): 4288-4298. DOI:10.1096/fj.09-135160.
[21]HAMMAKER D, SWEENEY S, FIRESTEIN G S. Signal transduction networks in rheumatoid arthritis[J]. Ann Rheum Dis, 2003, 62(Suppl 2): ii86-ii89. DOI:10.1136/ard.62.suppl_2.ii86.
[22]YAP H Y, TEE S Z, WONG M M, et al. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development[J]. Cells, 2018, 7(10): E161. DOI:10.3390/cells7100161.
[23]SCHETT G, ZWERINA J, FIRESTEIN G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis[J]. Ann Rheum Dis, 2008, 67(7): 909-916. DOI:10.1136/ard.2007.074278.
[24]LIU H T, POPE R M. The role of apoptosis in rheumatoid arthritis[J]. Curr Opin Pharmacol, 2003, 3(3): 317-322.
[25]YOON C H, CHUNG S J, LEE S W, et al. Gallic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes[J].Joint Bone Spine, 2013, 80(3): 274-279. DOI:10.1016/j.jbspin.2012.08.010.
 

相似文献/References:

[1]姚婕,郑江,蒋栋能,等.诃子抗内毒素活性组分的分离及活性评价[J].第三军医大学学报,2005,27(23):2345.

更新日期/Last Update: 2019-11-21