[1]禚昌龙,陈维艳,龙琦,等.同源重组修复通路基因遗传变异与结直肠癌易感性的关联研究[J].第三军医大学学报,2019,41(18):1769-1775.
 ZHUO Changlong,CHEN Weiyan,LONG Qi,et al.Association between polymorphisms of homologous recombination repair pathway genes and the risk of colorectal cancer[J].J Third Mil Med Univ,2019,41(18):1769-1775.
点击复制

同源重组修复通路基因遗传变异与结直肠癌易感性的关联研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第18期
页码:
1769-1775
栏目:
基础医学
出版日期:
2019-09-30

文章信息/Info

Title:
Association between polymorphisms of homologous recombination repair pathway genes and the risk of colorectal cancer
作者:
禚昌龙陈维艳龙琦夏宜馨王灵巧杨桓曹佳周紫垣张爱华
贵州医科大学公共卫生学院;陆军军医大学(第三军医大学)军事预防医学系:军事环境卫生学教研室,毒理学研究所
Author(s):
ZHUO Changlong CHEN Weiyan LONG Qi XIA Yixin WANG Lingqiao YANG Huan CAO Jia ZHOU Ziyuan ZHANG Aihua

School of Public Health, Guizhou Medical University, Guiyang, Guizhou Province, 550025; Department of Environment Health, Institute of Toxicology, Faculty of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
结直肠癌同源重组修复基因单核苷酸多态性
Keywords:
colorectal cancer homologous recombination repair single nucleotide polymorphisms
分类号:
R181.24; R394.3; R735.35
文献标志码:
A
摘要:

目的 探讨我国人群同源重组修复(homologous recombination repair,HRR)通路关键基因的单核苷酸多态性与结直肠癌(colorectal cancer,CRC)易感性关联。方法 以生物信息学分析结合文献筛选同源重组修复通路关键基因;采用基于通路分析的病例-对照研究设计,共纳入2001年1月至2004年6月于陆军军医大学3所附属医院普通外科经病理诊断的413例新发CRC病例与1 671例非肿瘤患者对照。以ILLUMINA人类基因组芯片对筛选出的基因上下游50 kb区域内的TagSNPs分型,采用logistic回归模型计算SNPs与CRC的关联。结果 筛选出17个HRR通路中的关键基因;在17个基因及上下游50 kb区域内的2 207个SNP中有16个位点与结直肠癌风险关联显著,其中RAD52基因3’-UTR的 rs11226位点携带A等位基因者的CRC风险相对携带G者增加约1.4倍(OR=1.42,95%CI=1.22~1.66,P=6.67×10-6);CRTC3-AS1基因内含子区rs75893366位点携带G等位基因者的CRC风险仅为携带A者的0.4倍(OR=0.43,95% CI=0.25~0.74,P=1.81×10-3)。但仅rs11226位点经bonferroni校正后在男性和女性中均具有显著性。结论 同源重组修复通路中17个关键基因的单核苷酸多态性与结直肠癌患病风险显著关联,提示同源重组修复通路基因的遗传变异可能影响结直肠癌的遗传易感性。

Abstract:

Objective To investigate the association of single nucleotide polymorphisms (SNPs) of homologous recombination repair (HRR) pathway genes with the genetic susceptibility of colorectal cancer (CRC) in Chinese population. MethodsBioinformatics database analysis combined with literature screening was used to identify the key genes involved in the HRR pathway. Following a pathway-based case-control study design, 413 patients with CRC and 1 671 cancer-free controls were recruited from 3 affiliated hospitals of the Army Military Medical University. TagSNPs of the selected genes and 50 kb of their upstream and downstream regions were genotyped using ILLUMINA human genome chip. Conditional logistic regression analysis was used to evaluate the association between the SNPs and the risk of CRC. ResultsSeventeen key genes in the HRR pathway were selected based on literature screening and bioinformatics database analysis. Sixteen of the total of 2207 genotyped SNPs were found significantly associated with the risk of CRC, among them the allele A at rs11226 of RAD52 3’-UTR was associated with an 1.4-fold higher risk of CRC than the allele G (OR=1.42, 95% CI: 1.22~1.66, P=6.67×10-6), and the allele G at rs75893366 of CRTC3-AS1 gene was associated with a 0.43-fold lower risk of CRC than allele A (OR=0.43, 95% CI: 0.25~0.74, P=1.81×10-3). But after Bonferroni correction, only the SNP of rs11226 showed significant differences in both male and female patients in stratified analysis. ConclusionThe 17 SNPs of the key genes in the HHR pathway are significantly associated with the risk of CRC, suggesting that the variations in HHR pathway genes contribute to the genetic susceptibility of CRC.

参考文献/References:

[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2017[J]. CA: Cancer J Clin, 2017, 67(1): 7-30. DOI: 10.3322/caac.21387.
[2]张玥, 石菊芳, 黄慧瑶, 等. 中国人群结直肠癌疾病负担分析[J]. 中华流行病学杂志, 2015, 36(7): 709-714. DOI: 10.3760/cma.j.issn.0254-6450.2015.07.010.
ZHANG Y, SHI J F, HUANG H Y,et al. Burden of colorectal cancer in China[J]. Chin J Epidemiol, 2015, 36(7): 709-714. DOI: 10.3760/cma.j.issn.0254-6450.2015.07.010.
[3]ALDUBAYAN S H, GIANNAKIS M, MOORE N D, et al. Inherited DNA-repair defects in colorectal cancer[J]. Am J Hum Genet, 2018, 102(3): 401-414. DOI: 10.1016/j.ajhg.2018.01.018.
[4]MIKI Y, SWENSEN J, SHATTUCK-EIDENS D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1[J]. Science, 1994, 266(5182): 66-71. DOI: 10.1126/science.7545954.
[5]WOOSTER R, BIGNELL G, LANCASTER J, et al. Identification of the breast cancer susceptibility gene BRCA2[J]. Nature, 1995,378(6559):789-792. DOI: 10.1038/378789a0.
[6]ROY R, CHUN J, POWELL S N. BRCA1 and BRCA2: different roles in a common pathway of genome protection[J]. Nat Rev Cancer, 2012, 12(1): 68-78. DOI: 10.1038/nrc3181.
[7]ORTHWEIN A, NOORDERMEER S M, WILSON M D, et al. A mechanism for the suppression of homologous recombination in G1 cells[J]. Nature, 2015, 528(7582): 422-426. DOI: 10.1038/nature16142.
[8]YANG H, ZHOU Y H, ZHOU Z Y, et al. A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a Southwestern Chinese population[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(9): 2522-2527. DOI: 10.1158/1055-9965.EPI-09-0398.
[9]KANEHISA M, SATO Y, KAWASHIMA M, et al. KEGG as a reference resource for gene and protein annotation[J]. Nucleic Acids Res, 2016, 44(D1): D457-D462. DOI: 10.1093/nar/gkv1070.
[10]BILLING D, HORIGUCHI M, WU-BAER F,et al. The BRCT domains of the BRCA1 and BARD1 tumor suppressors differentially regulate homology-directed repair and stalled fork protection[J]. Mol Cell, 2018, 72(1): 127-139.e8. DOI: 10.1016/j.molcel.2018.08.016.
[11]RAFNAR T, GUDBJARTSSOND F, SULEM P, et al. Mutations in BRIP1 confer high risk of ovarian cancer[J]. Nat Genet, 2011, 43(11): 1104-1107. DOI: 10.1038/ng.955.
[12]SMILENOVL B. Tumor development: haploinsufficiency and local network assembly[J]. Cancer Lett, 2006, 240(1): 17-28. DOI: 10.1016/j.canlet.2005.08.015.
[13]WONGA K, ORMONDE P A, PERO R, et al. Characterization of a carboxy-terminal BRCA1 interacting protein[J]. Oncogene, 1998, 17(18): 2279-2285. DOI: 10.1038/sj.onc.1202150.
[14]HIRAMOTO T, NAKANISHI T, SUMIYOSHI T, et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer[J]. Oncogene, 1999, 18(22): 3422-3426. DOI: 10.1038/sj.onc.1202691.
[15]HELLEDAY T. Homologous recombination in cancer development, treatment and development of drug resistance[J]. Carcinogenesis, 2010, 31(6): 955-960. DOI: 10.1093/carcin/bgq064.
[16]LOKB H, POWELL S N. Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement[J]. Clin Cancer Res, 2012, 18(23): 6400-6406. DOI: 10.1158/1078-0432.CCR-11-3150.
[17]MAHAJAN S, RAINA K, VERMA S,et al. Human RAD52 protein regulates homologous recombination and checkpoint function in BRCA2 deficient cells[J]. Int J Biochem Cell Biol, 2019, 107: 128-139. DOI: 10.1016/j.biocel.2018.12.013.
[18]LI Z Q, GUO Y, ZHOU L Q, et al. Association of a functional RAD52 genetic variant locating in a miRNA binding site with risk of HBV-related hepatocellular carcinoma[J]. Mol Carcinog, 2015, 54(9): 853-858. DOI: 10.1002/mc.22156.
[19]SHIT Y, YANG G, TU X Y, et al. RAD52 variants predict platinum resistance and prognosis of cervical cancer[J]. PLoS ONE, 2012, 7(11): e50461. DOI: 10.1371/journal.pone.0050461.
[20]JIANG Y, QIN Z Z, HU Z B, et al. Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility[J]. Carcinogenesis, 2013, 34(3): 689-693. DOI: 10.1093/carcin/bgs373.
[21]ZHANG L Y, ZHANG Y J, TANG C H, et al. RAD52 gene polymorphisms are associated with risk of colorectal cancer in a Chinese Han population[J]. Medicine (Baltimore), 2017, 96(49): e8994. DOI: 10.1097/MD.0000000000 008994.
[22]NACCARATI A, ROSA F, VYMETALKOVA V, et al. Double-strand break repair and colorectal cancer: gene variants within 3’ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome[J]. Oncotarget, 2016, 7(17): 23156-23169. DOI: 10.18632/oncotarget.6804.

更新日期/Last Update: 2019-09-21