[1]张岩昊,胡金娇,高宁.千金藤素增敏多柔比星抑制三阴性乳腺癌细胞增殖活性的机制研究[J].第三军医大学学报,2019,41(22):2229-2237.
 ZHANG Yanhao,HU Jinjiao,GAO Ning.Cepharanthine sensitizes triple-negative breast cancer cells to doxorubicin and inhibits cell proliferation[J].J Third Mil Med Univ,2019,41(22):2229-2237.
点击复制

千金藤素增敏多柔比星抑制三阴性乳腺癌细胞增殖活性的机制研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第22期
页码:
2229-2237
栏目:
临床医学
出版日期:
2019-11-30

文章信息/Info

Title:
Cepharanthine sensitizes triple-negative breast cancer cells to doxorubicin  and inhibits cell proliferation
作者:
张岩昊胡金娇高宁
陆军军医大学(第三军医大学)药学与检验医学系生药学与中药学教研室
Author(s):
 

Department of Pharmacognosy, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
千金藤素多柔比星三阴性乳腺癌线粒体自噬氧化应激细胞增殖细胞凋亡
Keywords:
cepharanthine doxorubicin triple-negative breast cancer mitophagy oxidative stress cell proliferation apoptosis
分类号:
R655.8;R737.9;R931.6
文献标志码:
A
摘要:

目的 探讨千金藤素增敏多柔比星抑制三阴性乳腺癌细胞增殖活性的机制。方法 MTT比色法测定不同浓度单用千金藤素(2、4、6、8、10 μmol/L)或多柔比星(0.2、0.4、0.6、0.8、1.0 μmol/L)及两者联合用药(千金藤素固定4 μmol/L,多柔比星固定0.5 μmol/L)对三阴性乳腺癌细胞MDA-MB-231和MDA-MB-468增殖的影响;流式细胞仪检测单用千金藤素或多柔比星及联合用药对三阴性乳腺癌细胞MDA-MB-231和MDA-MB-468凋亡的影响,以及对MDA-MB-231细胞内活性氧产生的影响;Western blot检测联合用药对细胞凋亡关键蛋白表达的影响;JC-1探针检测药物对线粒体膜电位的影响,激光共聚焦显微镜和透射电镜观察联合用药对细胞内线粒体形态和线粒体自噬体的影响。结果与单用多柔比星或千金藤素相比,联用千金藤素和多柔比星可明显抑制MDA-MB-231和MDA-MB-468细胞增殖(P<0.01),并且呈现协同效应(协同系数小于1);明显诱导MDA-MB-231和MDA-MB-468细胞凋亡(P<0.01),PARP-1剪切激活,Caspase 3激活,细胞色素C释放到细胞质,并且导致线粒体膜电位下降和线粒体自噬体的大量堆积,以及细胞内活性氧的大量产生(P<0.01)。结论 千金藤素与多柔比星联用可引起三阴性乳腺癌细胞内活性氧大量产生和线粒体自噬体的堆积,导致线粒体损伤,进而诱导细胞凋亡。

Abstract:

Objective To explore the molecular mechanism by which cepharanthine (CEP) sensitizes triple-negative breast cancer cells to doxorubicin (DOX) chemotherapy. MethodsThe triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with CEP (2, 4, 6, 8, or 10 μmol/L) alone, DOX (0.2, 0.4, 0.6, 0.8, or 1.0 μmol/L) alone, or the combination of CEP (4 μmol/L) and DOX (0.5 μmol/L). MTT assay was used to test the cell viability after the treatments, and flow cytometry was used to analyze the cell apoptosis and the production of reactive oxygen species (ROS); Western blotting was performed to detect the expression of PARP-1, cleaved caspase-3 and cytochrome C in the cells. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes of MDA-MB-231 cells in response to the treatments; the mitochondrial membrane potential of the cells was detected using JC-1 probe, and the mitochondrial morphology and mitophagosomes were observed with confocal laser scanning microscopy and TEM. ResultsCompared with CEP or DOX treatment alone, the combined treatment with CEP and DOX significantly suppressed the proliferation of both MDA-MB-231 and MDA-MB-468 cells (P<0.01) with an obvious synergistic effect(synergy coefficient <1). The combined treatment induced obvious apoptosis in the 2 cell lines (P<0.01) and caused the degradation of PARP-1, activation of caspase-3, and the release of cytochrome C. The combined treatment also resulted in significantly decreased mitochondrial membrane potential, accumulation of mitophagosomes, and a massive production of ROS in MDA-MB-231 cells (P<0.01). ConclusionCEP can sensitize triple-negative breast cancer cells to DOX chemotherapy probably by inducing the accumulation of mitophagosomes and increasing ROS production to cause mitochondrial damage and cell apoptosis.

参考文献/References:

[1]ANASTASIADI Z, LIANOS G D, IGNATIADOU E, et al. Breast cancer in young women:  An overview[J]. Updates Surg, 2017, 69(3):  313-317. DOI: 10.1007/s13304-017-0424-1.
[2]GOLDSMITH J, LEVINE B, DEBNATH J. Autophagy and cancer metabolism[J]. Meth Enzymol, 2014, 542:  25-57. DOI: 10.1016/B978-0-12-416618-9.00002-9. 
[3]RABINOWITZ J D, WHITE E. Autophagy and metabolism[J]. Science, 2010, 330(6009):  1344-1348. DOI: 10.1126/science.1193497.
[4]FU Y Y, HUANG Z Y, HONG L, et al. Targeting ATG4 in cancer therapy[J]. Cancers (Basel), 2019, 11(5):  E649. DOI: 10.3390/cancers11050649.
[5]LI Y J, LEI Y H, YAO N, et al. Autophagy and multidrug resistance in cancer[J]. Chin J Cancer, 2017, 36(1):  52. DOI: 10.1186/s40880-017-0219-2.
[6]SAMEIYAN E, HAYES A W, KARIMI G. The effect of medicinal plants on multiple drug resistance through autophagy:  A review of in vitro studies[J]. Eur J Pharmacol, 2019, 852:  244-253. DOI: 10.1016/j.ejphar.2019.04.001. 
[7]CHEN C, LU L, YAN S C, et al. Autophagy and doxorubicin resistance in cancer[J]. Anticancer Drugs, 2018, 29(1):  1-9. DOI: 10.1097/CAD.0000000000000572. 
[8]HAN S H, KORM S, HAN Y G, et al. GCA links TRAF6-ULK1-dependent autophagy activation in resistant chronic myeloid leukemia[J]. Autophagy, 2019:  1-15. DOI: 10.1080/15548627.2019.1596492.
[9]WAN B, DAI L, WANG L, et al. Knockdown of BRCA2 enhances cisplatin and cisplatin-induced autophagy in ovarian cancer cells[J]. Endocr Relat Cancer, 2018, 25(1):  69-82. DOI: 10.1530/ERC-17-0261. 
[10]LAW B Y, CHAN W K, XU S W, et al. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells[J]. Sci Rep, 2014, 4:  5510. DOI: 10.1038/srep05510. 
[11]GAO S M, LI X Y, DING X, et al. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells[J]. Cell Physiol Biochem, 2017, 41(4):  1633-1648. DOI: 10.1159/000471234. 
[12]邓琴, 傅若秋, 高宁, 等. 千金藤素对乳腺癌细胞MDA-MB-231自噬降解的影响[J]. 第三军医大学学报, 2017, 39(24):  2352-2358. DOI: 10.16016/j.1000-5404.201709083.
DENG Q, FU R Q, GAO N, et al. Cepharanthine inhibits autophagic degradation in breast cancer MDA-MB-231 cells[J]. J Third Mil Med Univ, 2017, 39(24):  2352-2358. DOI: 10.16016/j.1000-5404.201709083.
[13]姜秀星, 傅若秋, 高宁, 等. 千金藤素协同多柔比星逆转K562/ADR耐药的分子机制研究[J]. 第三军医大学学报, 2018, 40(23):  2154-2161. DOI: 10.16016/j.1000-5404.201807166.
JIANG X X, FU R Q, GAO N, et al. Molecular mechanism of cepharanthine synergistically acting with doxorubicin in reversing multidrug resistance of K562/ADR cells[J]. J Third Mil Med Univ, 2018, 40(23):  2154-2161. DOI: 10.16016/j.1000-5404.201807166.
[14]THORBURN A, THAMM D H, GUSTAFSON D L. Autophagy and cancer therapy[J]. Mol Pharmacol, 2014, 85(6):  830-838. DOI: 10.1124/mol.114.091850.
[15]CHUDE C I, AMARAVADI R K. Targeting autophagy in cancer:  update on clinical trials and novel inhibitors[J]. Int J Mol Sci, 2017, 18(6):  E1279. DOI: 10.3390/ijms18061279.
[16]JAESCHKE H, MCGILL M R, RAMACHANDRAN A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury:  lessons learned from acetaminophen hepatotoxicity[J]. Drug Metab Rev, 2012, 44(1):  88-106. DOI: 10.3109/03602532.2011.602688.
[17]BERNARDINI J P, LAZAROU M, DEWSON G. Parkin and mitophagy in cancer[J]. Oncogene, 2017, 36(10):  1315-1327. DOI: 10.1038/onc.2016.302.
[18]RUSSELL E G, COTTER T G. New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes[J]. Int Rev Cell Mol Biol, 2015, 319:  221-254. DOI: 10.1016/bs.ircmb.2015.07.004. 
[19]FONG M Y, JIN S Y, RANE M, et al. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer[J]. PLoS ONE, 2012, 7(7):  e42265. DOI: 10.1371/journal.pone.0042265.
 

更新日期/Last Update: 2019-11-21