[1]刘职瑞,杨波,刘芳,等.基于代谢组学的百合知母汤治疗抑郁症的作用研究[J].第三军医大学学报,2019,41(20):1917-1925.
 LIU Zhirui,YANG Bo,LIU Fang,et al.A metabolomic study of Baihe Zhimu decoction in a rat model of depression[J].J Third Mil Med Univ,2019,41(20):1917-1925.
点击复制

基于代谢组学的百合知母汤治疗抑郁症的作用研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第20期
页码:
1917-1925
栏目:
基础医学
出版日期:
2019-10-30

文章信息/Info

Title:
A metabolomic study of Baihe Zhimu decoction in a rat model of depression
作者:
刘职瑞杨波刘芳郭延磊夏培元
陆军军医大学(第三军医大学)第一附属医院药剂科;重庆市中药研究院
Author(s):
LIU Zhirui YANG Bo LIU Fang GUO Yanlei XIA Peiyuan

Department of Pharmacy, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China

关键词:
百合知母汤抑郁症代谢组学代谢通路
Keywords:
Baihe Zhimu decoction depression metabolomics metabolic pathways
分类号:
R749.4;R932
文献标志码:
A
摘要:

目的 观察抑郁大鼠模型血清中内源性代谢物的变化,分析百合知母汤对异常代谢物的调节作用。方法 40只雄性SD大鼠(SPF级)按随机数字表法分为4组,每组10只,分别是正常对照组、模型组、氟西汀+模型组和百合知母汤+模型组。采用慢性不可预见性轻度应激联合孤养的方法建立抑郁大鼠模型,利用代谢组学方法寻找抑郁模型大鼠血清中改变的内源性代谢物及其相关代谢通路,从内源性代谢物的角度评价百合知母汤的抗抑郁作用。结果 百合知母汤可显著增加抑郁模型大鼠的体质量、糖水偏好度以及行为学得分(P<005),并使模型大鼠血清中水平异常的23个差异代谢物回调至正常水平,主要涉及脂肪酸酰胺代谢、苯丙氨酸代谢、甘氨酸代谢和脂质代谢;而氟西汀仅能纠正甘氨酸代谢和脂质代谢2条代谢通路中17个代谢物的水平异常。结论 与氟西汀相比,百合知母汤可影响更多的代谢通路而发挥抗抑郁作用。
 

Abstract:

ObjectiveTo investigate the changes in endogenous metabolites in a rat model of depression and the modulatory effect of Baihe Zhimu decoction (BZD) on the abnormal metabolites through a metabolomic approach. MethodsForty rats were randomly divided into normal control group, depression model group, fluoxetine treatment group and BZD treatment group. In all but the control group, rat models of depression were established by keeping the rats in separate cages combined with exposure to chronic unpredictable mild stress. A metabolomic approach was used to identify the endogenous metabolites and metabolic pathways that were related to the antidepressive effects of BZD. ResultsBZD could significantly increase the body weight, sucrose preference and behavioral scores in the rat models of depression (P<0.05). BZD treatment resulted in the recovery of normal levels for 23 metabolites that showed abnormal serum levels in the depressive rats, and these metabolites were associated with fatty acid amide metabolism, phenylalanine metabolism, glycine metabolism and lipid metabolism. By comparison, fluoxetine treatment only restored the normal levels for 17 abnormal metabolites, which were related with glycine metabolism and lipid metabolism. ConclusionBZD can modulate more metabolic pathways than fluoxetine for treatment of depression.
 

参考文献/References:

[1]GARCA-VELZQUEZ R, JOKELA M, ROSENSTRM T H. Symptom severity and disability in psychiatric disorders: the US collaborative psychiatric epidemiology survey[J]. J AffectDisord, 2017, 222: 204-210. DOI: 10.1016/j.jad.2017.07.015.
[2]DODD S, MITCHELL P B, BAUER M, et al. Monitoring for antidepressant-associated adverse events in the treatment of patients with major depressive disorder:  An international consensus statement[J]. World JBiol Psychiatry, 2018, 19(5): 330-348.DOI: 10.1080/15622975.2017.1379609.
[3]WANG YY, LI M L, LIANG Y, et al. Chinese herbal medicine for the treatment of depression:  applications, efficacies and mechanisms[J]. Curr Pharm Des, 2017, 23(34):  5180-5190. DOI: 10.2174/1381612823666170918120018.
[4]YANG B, LIU Z R, WANG Q, et al. Pharmacokinetic comparison of seven major bioactive components in normal and depression model rats after oral administration of Baihe Zhimu decoction by liquid chromatography-tandem mass spectrometry[J]. J Pharm Biomed Anal, 2018, 148:  119-127. DOI: 10.1016/j.jpba.2017.09.031.
[5]曹秋实, 李德顺, 袁丽, 等. 百合知母汤对CUMS抑郁症大鼠海马中ERK1/2信号通路关键分子的影响[J]. 中华中医药学刊, 2017, 35(12):  3154-3157. DOI: 10.13193 /j.issn.1673-7717.2017.12.044.
CAO Q S, LI D S, YUAN L, et al. Influence of Baihe Zhimu Decoction in levels of key factors of ERK1/2 signaling pathway in hippocampus tissues of depression rats[J]. Chin Arch Tradit Chin Med, 2017, 35(12):  3154-3157. DOI: 10.13193/j.issn.1673-7717.2017.12.044.
[6]李德顺, 袁丽, 刘奇, 等. 百合知母汤对抑郁症大鼠环磷酸腺苷信号通路的影响[J]. 武汉大学学报(医学版), 2015, 36(6):  867-871. DOI: 10.14188/j.1671-8852.2015.06.006.
LI D S, YUAN L, LIU Q, et al. Effects of Baihe zhimu decoction on cAMP signal transduction pathway of depression rats[J]. Med J Wuhan Univ, 2015, 36(6):  867-871. DOI: 10.14188/j.1671-8852.2015.06.006.
[7]刘奇, 袁丽, 李德顺, 等. 百合知母汤对抑郁症大鼠行为及单胺递质的影响[J]. 中华中医药学刊, 2016, 34(7):  1729-1732. DOI: 10.13193/j.issn.1673-7717.2016.07.056.
LIU Q, YUAN L, LI D S, et al. Baihe zhimu decoction on depression rats' behavior and monoamine neurotransmitters[J]. Chin Arch Tradit Chin Med, 2016, 34(7): 1729-1732. DOI: 10.13193/j.issn.1673-7717.2016.07.056.
[8]ZHANG R Z, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine:  review and assessment[J]. FrontPharmacol, 2019, 10:  123. DOI: 10.3389/fphar.2019.00123.
[9]WANG M, CHEN L, LIU D, et al. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine[J].Chem Biol Interact, 2017, 273:  133-141. DOI: 10.1016/j.cbi.2017.06.011.
[10]DUMAN R S, VOLETI B. Signaling pathways underlying the pathophysiology and treatment of depression:  novel mechanisms for rapid-acting agents[J]. TrendsNeurosci, 2012, 35(1): 47-56. DOI: 10.1016/j.tins.2011.11.004.
[11]LIU X N, ZHENG P, ZHAO X J, et al. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry[J]. J Proteome Res, 2015,14(5): 2322-2330. DOI: 10.1021/acs.jproteome.5b00144.
[12]HARRO J, HIDKIND R, HARRO M, et al. Chronic mild unpredictable stress after noradrenergic denervation:  attenuation ofbehavioural and biochemical effects of DSP-4 treatment[J]. Eur Neuropsychopharmacol, 1999, 10(1):  5-16. DOI:  10.1016/S0924-977X(99)00043-7.
[13]LUO D S, LI J B, CHEN K C, et al. Untargeted metabolomics reveals the protective effect offufang zhenshu tiaozhi (FTZ) on aging-induced osteoporosis in mice[J]. Front Pharmacol, 2018, 9:  1483. DOI: 10.3389/fphar.2018.01483.
[14]KHAMIS MM, HOLT T, AWAD H, et al. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD[J]. Metabolomics, 2018, 14(9):  115. DOI: 10.1007/s11306-018-1418-9.
[15]DU H L, WANG K Q, SU L, et al.Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression[J]. J Pharm Biomed Anal, 2016, 128:  469-479. DOI: 10.1016/j.jpba.2016.06.019.
[16]DU H, ZHAO H, LAI X, et al. Metabolic profiles revealed synergistically antidepressant effects of lilies andrhizoma anemarrhenae in a rat model of depression[J]. Biomed Chromatogr, 2017.[Epub ahead of print]. DOI: 10.1002/bmc.3923.
[17]DEMIN K A, SYSOEV M, CHERNYSH M V, et al. Animal models of major depressive disorder and the implications for drug discovery and development[J]. ExpertOpin Drug Discov,2019,14(4): 365-378. DOI: 10.1080/17460441.2019.1575360.
[18]POWELL T R, FERNANDES C, SCHALKWYK L C. Depression-related behavioral tests[J].Curr Protoc Mouse Biol, 2012, 2(2): 119-127. DOI: 10.1002/9780470942390.mo110176.
[19]CARTWRIGHT C, GIBSON K, READ J, et al. Long-term antidepressant use:  patient perspectives of benefits and adverse effects[J]. Patient Prefer Adherence, 2016, 10:  1401-1407. DOI: 10.2147/PPA.S110632.
[20]MICHEL T M, PLSCHEN D, THOME J. The role of oxidative stress in depressive disorders[J].Curr Pharm Des, 2012,18(36): 5890-5899. DOI: 10.2174/138161212803523554.
[21]ZOU Y N, KIM D H, JUNG K J, et al. Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging[J]. Rejuvenation Res, 2009, 12(1):  15-24. DOI: 10.1089/rej.2008.0807.
[22]STANLEY W C, RECCHIA F A, LOPASCHUK G D. Myocardial substrate metabolism in the normal and failing heart[J].Physiol Rev, 2005, 85(3):  1093-1129. DOI: 10.1152/physrev.00006.2004.
[23]NASCA C, XENOS D, BARONE Y, et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors[J]. Proc Natl Acad Sci USA, 2013,110(12): 4804-4809. DOI: 10.1073/pnas.1216100110.
[24]IRMISCH G, SCHLFKE D, GIEROW W, et al. Fatty acids and sleep in depressed inpatients[J]. ProstaglandinsLeukot Essent Fatty Acids, 2007, 76(1):  1-7. DOI: 10.1016/j.plefa.2006.09.001.
[25]REYES PRIETO N M, ROMANO LPEZ A, PREZ MORALES M, et al.Oleamide restores sleep in adult rats that were subjected to maternal separation[J]. Pharmacol Biochem Behav, 2012, 103(2):  308-312. DOI: 10.1016/j.pbb.2012.08.028.
[26]GERHARD D M, WOHLEB E S, DUMAN R S. Emerging treatment mechanisms for depression:  focus on glutamate and synaptic plasticity[J]. DrugDiscov Today, 2016, 21(3):  454-464. DOI: 10.1016/j.drudis.2016.01.016.
[27]LIU CC, WU Y F, FENG G M, et al. Plasma-Metabolite-biomarkers for the therapeutic response in depressed patients by the traditional Chinese medicine formula Xiaoyaosan:  A (1)H NMR-based metabolomics approach[J]. J Affect Disord, 2015, 185:  156-163. DOI: 10.1016/j.jad.2015.05.005.
[28]POHLE-KRAUZA R J, CAREY K H, PELKMAN C L. Dietary restraint and menstrual cycle phase modulated L-phenylalanine-induced satiety[J].Physiol Behav, 2008, 93(4/5): 851-861. DOI: 10.1016/j.physbeh.2007.11.051.
[29]NI Y, SU M, LIN J, et al. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress[J]. FEBS Lett, 2008, 582(17): 2627-2636.DOI: 10.1016/j.febslet.2008.06.040.
 

相似文献/References:

[1]黎雪梅,况利.抗抑郁药物促进抑郁模型大鼠行为和海马血管内皮细胞生长因子的表达[J].第三军医大学学报,2009,31(05):430.
 LI Xue-mei,KUANG Li.Effect of antidepressant on behavior and vascular endothelial cell growth factor in hippocampus of rat model of depression[J].J Third Mil Med Univ,2009,31(20):430.
[2]罗维,瞿广素.护理心理干预对慢性心力衰竭合并抑郁症患者心功能及生活质量的影响[J].第三军医大学学报,2012,34(18):1918.
[3]李大奇,况利,王敏建.不同电休克方法对抑郁模型大鼠海马干扰素-γ受体表达的影响[J].第三军医大学学报,2007,29(15):1494.
 LI Da-qi,KUANG Li,WANG Min-jian.Effects of electroshock on interferon gamma receptor expression in hippocampus of depressed rats[J].J Third Mil Med Univ,2007,29(20):1494.
[4]牟君,谢鹏.海马神经发生障碍——抑郁症发病机制的新观念[J].第三军医大学学报,2006,28(11):1264.
[5]戴若以,顾小红,张云东,等.阻断促肾上腺皮质激素释放激素1受体对慢性束缚应激致大鼠类抑郁症状的改善[J].第三军医大学学报,2015,37(22):2273.
 Dai Ruoyi,Gu Xiaohong,Zhang Yundong,et al.Blocking corticotropin-releasing hormone 1 receptor regulates expression of BDNF and GAP-43 in hypothalamus of depression rats induced by chronic restraint stress[J].J Third Mil Med Univ,2015,37(20):2273.
[6]曾妍,艾明,陈建梅,等.焦虑抑郁障碍共病患者的特质焦虑与其血清BDNF水平的相关性研究[J].第三军医大学学报,2011,33(18):1967.
 Zeng Yan,Ai Ming,Chen Jianmei,et al.Correlation between trait anxiety and serum brain-derived neurotrophic factor level in patients with combined anxiety and depression[J].J Third Mil Med Univ,2011,33(20):1967.
[7]赵晓晶,冯正直,王新,等.具体性自传体记忆任务下抑郁症患者的功能磁共振成像特点[J].第三军医大学学报,2010,32(19):2121.
 Zhao Xiaojing,Feng Zhengzhi,Wang Xin,et al.Characteristics of functional magnetic resonance image in activated brain areas under specific autobiographical memory in patients with depression[J].J Third Mil Med Univ,2010,32(20):2121.
[8]周俊英,陶媛,李力,等.伴有抑郁症状孕妇睡眠质量分析[J].第三军医大学学报,2010,32(05):471.
 Zhou Junying,Tao Yuan,Li Li,et al.Analysis of sleep quality in pregnant women with depression[J].J Third Mil Med Univ,2010,32(20):471.
[9]吴胜,张代江.米氮平与帕罗西汀治疗伴躯体症状抑郁症的对照分析[J].第三军医大学学报,2009,31(22):2290.
[10]王晓霞,蒋成刚,冯正直.抑郁症患者局部脑功能静息态磁共振成像研究[J].第三军医大学学报,2011,33(10):1052.
 Wang Xiaoxia,Jiang Chenggang,Feng Zhengzhi.Regional brain functional connectivity of depressed patients with restingstate functional magnetic resonance imaging[J].J Third Mil Med Univ,2011,33(20):1052.

更新日期/Last Update: 2019-10-25