[1]罗兴,罗京,刘鑫,等.过表达TRIM2对肾透明细胞癌增殖、迁移和干性的影响[J].第三军医大学学报,2019,41(18):1712-1721.
 LUO Xing,LUO Jing,LIU Xin,et al.Overexpression of TRIM2 suppresses proliferation, migration and stemness of clear cell renal cell carcinoma cells in vitro[J].J Third Mil Med Univ,2019,41(18):1712-1721.
点击复制

过表达TRIM2对肾透明细胞癌增殖、迁移和干性的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第18期
页码:
1712-1721
栏目:
基础医学
出版日期:
2019-09-30

文章信息/Info

Title:
Overexpression of TRIM2 suppresses proliferation, migration and stemness of clear cell renal cell carcinoma cells in vitro
作者:
罗兴罗京刘鑫周韬孙碧韶方针强徐杰李龙坤
陆军军医大学(第三军医大学)第二附属医院泌尿外科
Author(s):
LUO Xing LUO Jing LIU Xin ZHOU Tao SUN Bishao FANG Zhenqiang XU Jie LI Longkun

Department of Urology, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
肾透明细胞癌TRIM2增殖迁移成球干性
Keywords:
clear cell renal cell carcinoma tripartite motif-containing protein 2 proliferation migration cell sphere formation stemness
分类号:
R341; R730.23; R737.11
文献标志码:
A
摘要:

目的 探究三结构域蛋白2 (tripartite motif-containing protein 2,TRIM2) 对肾透明细胞癌增殖、迁移和干性的影响。方法 从TCGA数据库中预测TRIM2对肾透明细胞癌患者预后的影响,免疫组化检测TRIM2在肾透明细胞癌及癌旁组织的表达,Western blot实验选出TRIM2表达相对低的两个肾透明细胞癌细胞株,并用TRIM2过表达质粒转染肾透明细胞癌细胞株,Western blot以及荧光显微镜观测转染效率。成功转染TRIM2过表达质粒后,用CCK-8实验、划痕实验和细胞成球实验检测细胞增殖、迁移和成球能力,并用q-PCR和Western blot检测TRIM2对细胞干性相关基因的影响,从COEXPEDIA数据库构建一个在肾癌中与TRIM2相关的基因共表达网络,进一步探索TRIM2在肾透明细胞癌发生、发展中的作用机制。结果TRIM2高表达的肾透明细胞癌患者的预后较TRIM2低表达患者好(P<0.001),免疫组化结果显示,与癌旁组织比较,TRIM2在肾透明细胞癌组织中低表达。TRIM2过表达后,肾透明细胞癌细胞增殖、迁移和成球能力均明显下降(P<0.01),且干性基因(C-MYC、NANOG、OCT4)的表达也明显下调(P<0.01)。构建的基因共表达网络提示,与TRIM2相关程度较高的基因有NR3C2、ESRRG、COL4A3和CTDSPL。结论TRIM2过表达后能抑制肾透明细胞癌增殖、迁移和成球能力,且下调干性基因的表达,与TRIM2相关程度较高的基因可能参与肾透明细胞癌的发生、发展。

Abstract:

Objective To explore the effect of tripartite motif-containing protein 2 (TRIM2) on the proliferation, migration and stemness of clear cell renal clear carcinoma. MethodsWe performed a survival analysis of the patients with clear cell renal cell carcinoma using TCGA database to assess how TRIM2 expression affected the clinical outcomes of the patients. We also collected the clinical specimens of clear cell renal cell carcinoma tissues and paired adjacent tissues for testing the expression of TRIM2 using immunohistochemistry. From different clear cell renal clear carcinoma cells, we selected 2 cell lines that expressed low levels of TRIM2 based on the results of Western blotting, and tested the effect of TRIM2 overexpression on the cell proliferation, migration and sphere-forming ability using CCK8 assay, wound healing assay and cell sphere formation assay; the effect of TRIM2 overexpression on the stemness of the cells was evaluated using quantitative real-time PCR and Western blotting. Based on the data from COEXPEDIA database, we constructed a gene co-expression network associated with TRIM2 in renal cancer to explore the role of TRIM2 in the tumorigenesis and progression of clear cell renal cell carcinoma. ResultsAnalysis of the TCGA database showed that in patients with clear cell renal cell carcinoma, a high expression of TRIM2 was associated with a higher survival possibility (P<0.001). The results of immunohistochemistry showed that TRIM2 was lowly expressed in renal clear cell carcinoma tissues as compared with the adjacent tissues. In clear cell renal cell carcinoma cells with low TRIM2 expression, overexpression of TRIM2 significantly suppressed the cell proliferation (P<0.01), migration (P<0.01) and cell sphere formation (P<0.01) and obviously lowered the expressions of the genes (C-MYC, NANOG, and OCT4) associated with the cell stemness (P<0.01). ConclusionOverexpression of TRIM2 in clear cell renal cell carcinoma cells can inhibit the cell proliferation, migration and sphere formation and down-regulate the expressions of the stemness genes. The genes (NR3C2, ESRRG, COL4A3 and CTDSPL) that are closely related with TRIM2 may all participate in the occurrence and progression of clear cell renal cell carcinoma.

参考文献/References:

[1]刘鑫, 刘小兵, 刘骞, 等. 钙激活核苷酸酶1敲低对肾透明细胞癌769-P细胞增殖和迁移的影响[J]. 第三军医大学学报, 2018, 40(6): 473-478. DOI: 10.16016/j.1000-5404.201711057.
LIU X, LIU X B, LIU Q, et al. Silencing calcium-activated nucleotidase 1 inhibits proliferation and migration of clear cell renal cell carcinoma 769-P cells[J]. J Third Mil Med Univ, 2018, 40(6): 473-478. DOI: 10.16016/j.1000-5404.201711057. 
[2]ARORA H C, FASCELLI M, ZHANG J H, et al. Kidney, ureteral, and bladder cancer: A primer for the internist[J]. Med Clin North Am, 2018, 102(2): 231-249. DOI: 10.1016/j.mcna.2017.10.002. 
[3]HAKIMI A A, VOSS M H, KUO F S, et al. Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase Ⅲ trial[J]. Cancer Discov, 2019, 9(4): 510-525. DOI: 10.1158/2159-8290.CD-18-0957. 
[4]LIN T C, YEH Y M, FAN W L, et al. Ghrelin upregulates oncogenic aurora A to promote renal cell carcinoma invasion[J]. Cancers (Basel), 2019, 11(3): E303. DOI: 10.3390/cancers11030303.
[5]OHKAWA N, KOKURA K, MATSU-URA T, et al. Molecular cloning and characterization of neural activity-related RING finger protein (NARF): a new member of the RBCC family is a candidate for the partner of myosin V[J]. J Neurochem, 2001, 78(1): 75-87. DOI: 10.1046/j.1471-4159.2001.00373.x. 
[6]BALASTIK M, FERRAGUTI F, PIRES-DA SILVA A, et al. Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration[J]. Proc Natl Acad Sci USA, 2008, 105(33): 12016-12021. DOI: 10.1073/pnas.0802261105. 
[7]THOMPSON S, PEARSON A N, ASHLEY M D, et al. Identification of a novel Bcl-2-interacting mediator of cell death (Bim) E3 ligase, tripartite motif-containing protein 2 (TRIM2), and its role in rapid ischemic tolerance-induced neuroprotection[J]. J Biol Chem, 2011, 286(22): 19331-19339. DOI: 10.1074/jbc.M110.197707. 
[8]Global Burden of Disease Cancer Collaboration, FITZMAURICE C, ALLEN C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study[J]. JAMA Oncol, 2017, 3(4): 524-548. DOI: 10.1001/jamaoncol.2016.5688. 
[9]LIU N, HUANG D, CHENG X, et al. Percutaneous radio-frequency ablation for renal cell carcinoma vs. partial nephrectomy: Comparison of long-term oncologic outcomes in both clear cell and non-clear cell of the most common subtype[J]. Urol Oncol, 2017, 35(8): 530.e1-530.e6. DOI: 10.1016/j.urolonc.2017.03.014. 
[10]LIU X, HAO Y, YU W, et al. Long non-coding RNA emergence during renal cell carcinoma tumorigenesis[J]. Cell Physiol Biochem, 2018, 47(2): 735-746. DOI: 10.1159/000490026. 
[11]JI S Q, SU X L, CHENG W L, et al. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1α pathway[J]. Urol Oncol, 2014, 32(2): 153-161. DOI: 10.1016/j.urolonc.2012.09.013. 
[12]ZHANG P, MA X, SONG E, et al. Tubulin cofactor A functions as a novel positive regulator of ccRCC progression, invasion and metastasis[J]. Int J Cancer, 2013, 133(12): 2801-2811. DOI: 10.1002/ijc.28306. 
[13]AUDENET F, YATES D R, CANCEL-TASSIN G, et al. Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine[J]. BJU Int, 2012, 109(12): 1864-1870. DOI: 10.1111/j.1464-410X.2011.10661.x. 
[14]YANG L, ZHAO Z, ZHAO S, et al. The clinicopathological significance of epigenetic silencing of VHL promoter and renal cell carcinoma: A meta-analysis[J]. Cell Physiol Biochem, 2016, 40(6): 1465-1472. DOI: 10.1159/000453198.
[15]KEITH B, JOHNSON R S, SIMON M C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression[J]. Nat Rev Cancer, 2011, 12(1): 9-22. DOI: 10.1038/nrc3183. 
[16]FROST J, GALDEANO C, SOARES P, et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition[J]. Nat Commun, 2016, 7: 13312. DOI: 10.1038/ncomms13312. 
[17]ZHAO Z, CHEN C, LIN J, et al. Synergy between von Hippel-Lindau and P53 contributes to chemosensitivity of clear cell renal cell carcinoma[J]. Mol Med Rep, 2016, 14(3): 2785-2790. DOI: 10.3892/mmr.2016.5561. 
[18]MARTNEZ-SEZ O, GAJATE BORAU P, ALONSO-GORDOA T, et al. Targeting HIF-2 α in clear cell renal cell carcinoma: A promising therapeutic strategy[J]. Crit Rev Oncol Hematol, 2017, 111: 117-123. DOI: 10.1016/j.critrevonc.2017.01.013. 
[19]XIAO W, WANG X, WANG T, et al. TRIM2 downregulation in clear cell renal cell carcinoma affects cell proliferation, migration, and invasion and predicts poor patients’ survival[J]. Cancer Manag Res, 2018, 10: 5951-5964. DOI: 10.2147/CMAR.S185270. 
[20]CHEN X, DONG C, LAW P T, et al. MicroRNA-145 targets TRIM2 and exerts tumor-suppressing functions in epithelial ovarian cancer[J]. Gynecol Oncol, 2015, 139(3): 513-519. DOI: 10.1016/j.ygyno.2015.10.008. 
[21]WILLIAMS M D, ZHANG L, ELLIOTT D D, et al. Differential gene expression profiling of aggressive and nonaggressive follicular carcinomas[J]. Hum Pathol, 2011, 42(9): 1213-1220. DOI: 10.1016/j.humpath.2010.12.006. 
[22]MIYATAKE T, UEDA Y, NAKASHIMA R, et al. Down-regulation of insulin-like growth factor binding protein-5 (IGFBP-5): novel marker for cervical carcinogenesis[J]. Int J Cancer, 2007, 120(10): 2068-2077. DOI: 10.1002/ijc.22264. 
[23]QIN Y, YE J, ZHAO F, et al. TRIM2 regulates the development and metastasis of tumorous cells of osteosarcoma[J]. Int J Oncol, 2018, 53(4): 1643-1656. DOI: 10.3892/ijo.2018.4494.
[24]CAO H, FANG Y, LIANG Q W, et al. TRIM2 is a novel promoter of human colorectal cancer[J]. Scand J Gastroenterol, 2019, 54(2): 210-218. DOI: 10.1080/00365521.2019.1575463. 
[25]ZHAO Z, ZHANG M, DUAN X, et al. Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma[J]. J Cell Physiol, 2018, 233(10): 6825-6838. DOI: 10.1002/jcp.26550. 
[26]NAM H Y, CHANDRASHEKAR D S, KUNDU A, et al. Integrative epigenetic and gene expression analysis of renal tumor progression to metastasis[J]. Mol Cancer Res, 2019, 17(1): 84-96. DOI: 10.1158/1541-7786.MCR-17-0636. 
[27]SIAMAKPOUR-REIHANI S, OWZAR K, JIANG C, et al. Prognostic significance of differential expression of angiogenic genes in women with high-grade serous ovarian carcinoma[J]. Gynecol Oncol, 2015, 139(1): 23-29. DOI: 10.1016/j.ygyno.2015.08.001. 
[28]DENG B, MOLINA J, AUBRY M C, et al. Clinical bio-markers of pulmonary carcinoid tumors in never smokers via profiling miRNA and target mRNA[J]. Cell Biosci, 2014, 4: 35. DOI: 10.1186/2045-3701-4-35. 
[29]DONG P, XIONG Y, YU J, et al. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer[J]. Oncogene, 2018, 37(39): 5257-5268. DOI: 10.1038/s41388-018-0347-4. 
[30]ZHANG L, HE X, LI F, et al. The miR-181 family promotes cell cycle by targeting CTDSPL, a phosphatase-like tumor suppressor in uveal melanoma [J]. J Exp Clin Cancer Res, 2018, 37(1): 15. DOI: 10.1186/s13046-018-0679-5.
 

更新日期/Last Update: 2019-09-21