[1]刘代焱,王尧,胡先玲,等.青年中期人群首发重度抑郁障碍弥散张量成像研究[J].第三军医大学学报,2019,41(18):1807-1812.
 LIU Daiyan,WANG Yao,HU Xianling,et al.Diffusion tensor imaging of the white matter in young adults aged 18-25 years with first-episode major depression disorder[J].J Third Mil Med Univ,2019,41(18):1807-1812.
点击复制

青年中期人群首发重度抑郁障碍弥散张量成像研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第18期
页码:
1807-1812
栏目:
医学心理学
出版日期:
2019-09-30

文章信息/Info

Title:
Diffusion tensor imaging of the white matter in young adults aged 18-25 years with first-episode major depression disorder
作者:
刘代焱王尧胡先玲唐倩影罗菡任正伽郭俊伟姬凌谷珊珊瞿伟
陆军军医大学(第三军医大学)第一附属医院:医学心理科,放射科
Author(s):
LIU Daiyan WANG Yao HU Xianling TANG Qianying LUO Han REN Zhengjia GUO Junwei JI Ling GU Shanshan QU Wei

Department of Clinical Psychology, 2Department of Radiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China

关键词:
弥散张量成像抑郁症各异向性分数径向扩散系数青年人
Keywords:
diffusion tensor imaging depressive disorder fractional anisotropy radial diffusivity young adults
分类号:
R445.2; R742; R749.4
文献标志码:
A
摘要:

目的 利用弥散张量成像技术(diffusion tensor imaging, DTI)探索青年中期人群(18~25岁)首发重度抑郁障碍(major depression disorder,MDD)脑白质神经环路结构的改变,以及脑白质神经环路结构改变与抑郁程度和病程的关系。方法 选取2018年6-12月本院医学心理科青年中期MDD人群23例为抑郁症组,选取健康志愿者25例为对照组。两组均进行流调中心用抑郁量表(center for epidemiological studies depression scale, CES-D)和9条患者健康问卷(the 9-item patient health questionnaire, PHQ-9)测试,并进行磁共振扫描,获取DTI图像,利用基于纤维束示踪的空间统计分析方法(tract-based spatial statistics,TBSS)进行分析,通过无阈值簇群增强(threshold-free cluster enhancement, TFCE)方法进行多重比较校正,比较两组被试各向异性分数(fractional anisotropy, FA)、径向扩散系数(radial diffusivity, RD)、平均扩散系数(mean diffusion, MD)以及轴向扩散系数(axial diffusivity, AD)的差异,对两组纤维束有差异区域的FA值、RD值与PHQ-9评分和病程进行相关性分析。结果 与对照组比较,抑郁症组左侧上纵束、右侧丘脑前辐射以及双侧皮质脊髓束FA值下降 (TFCE, P<0.05),左侧上纵束RD值升高(TFCE, P<0.05),两组MD值和AD值差异无统计学意义;左侧上纵束RD值与病程呈正相关(r=0.534, P<0.05),左侧皮质脊髓束FA值与病程呈负相关(r=-0.659,P<0.05),左侧上纵束、右侧丘脑前辐射以及双侧皮质脊髓束的FA值和RD值与PHQ-9评分无显著相关(P>0.05)。结论 青年中期首发MDD人群存在脑白质神经环路的改变,其改变可能与青年中期人群MDD病程有关。

Abstract:

Objective To investigate the microstructural alternations of the white matter nerve circuit detected by diffusion tensor imaging (DTI) in young adults aged 18-25 years with first-episode major depression disorder (MDD) and explore the association of such changes with the symptoms and disease course of depression. MethodsFrom June to December, 2018, 23 young adults aged 18-25 years with the diagnosis of MDD were recruited from the Department of Medical Psychology of our hospital as the depression group, with 25 age-matched healthy volunteers as the control group. All the participants were tested using the Center for Epidemiological Studies Depression Scale (CDS-D) and the 9-item Patient Health Questionnaire (PHQ-9), and DTI images were obtained by magnetic resonance scanning and analyzed using tract-based spatial statistics (TBSS) method. Correction for multiple comparisons was carried out using a threshold-free cluster enhancement (TFCE) method. The differences in the fractional anisotropy (FA), radial diffusivity (RD), mean diffusion (MD) and axial diffusivity (AD) between the 2 groups were analyzed. The correlations of FA, RD, MD and AD values in the brain regions showing microstructural alternations with the PHQ-9 scores and the disease course were also analyzed. ResultsCompared with the healthy volunteers, the patients with first-episode MDD showed significantly decreased FA values in the left superior longitudinal tract, the right anterior thalamic radiation and the bilateral corticospinal tract (P<0.05) and increased RD values in the left superior longitudinal tract (P<0.05); the MD and AD values did not differ significantly between the two groups. In the patients with MDD, the RD values of the left superior longitudinal tract was positively correlated with the disease course (r=0.534, P<0.05), and the FA values of the left corticospinal tract was negatively correlated with the disease course (r=-0.659, P<0.05); The FA and RD values of the left superior longitudinal tract, the right anterior thalamic radiation and the bilateral corticospinal tract were not significantly correlated with the PHQ-9 scores (P>0.05). ConclusionThe patients with MDD in their early adulthood have obvious alternations of the white matter fiber nerve circuit, which can be related with the disease course of MDD.

参考文献/References:

[1]WANG L, HERMENS D F, HICKIE I B, et al. A systematic review of resting-state functional-MRI studies in major depression[J]. J Affect Disord, 2012, 142(1/2/3): 6-12. DOI: 10.1016/j.jad.2012.04.013.
[2]DU M Y, LIU J, CHEN Z Q, et al. Brain grey matter volume alterations in late-life depression[J]. J Psychiatry Neurosci, 2014, 39(6): 397-406.
[3]ZENG L L, LIU L, LIU Y D, et al. Antidepressant treatment normalizes white matter volume in patients with major depression[J]. PLoS ONE, 2012, 7(8): e44248. DOI: 10.1371/journal.pone.0044248.
[4]MACMASTER F P, MIRZA Y, SZESZKO P R, et al. Amygdala and hippocampal volumes in familial early onset major depressive disorder[J]. Biol Psychiatry, 2008, 63(4): 385-390. DOI: 10.1016/j.biopsych.2007.05.005.
[5]ZHONG X, PU W D, YAO S Q. Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-nave patients with major depressive disorder: A meta-analysis of resting-state fMRI data[J]. J Affect Disord, 2016, 206: 280-286. DOI: 10.1016/j.jad.2016.09.005.
[6]CARCELLER-SINDREU M, SERRA-BLASCO M, DE DIEGO-ADELIO J, et al. Altered white matter volumes in first-episode depression: Evidence from cross-sectional and longitudinal voxel-based analyses[J]. J Affect Disord, 2019, 245: 971-977. DOI: 10.1016/j.jad.2018.11.085.
[7]BLOOD A J, IOSIFESCU D V, MAKRIS N, et al. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder[J]. PLoS ONE, 2010, 5(11): e13945. DOI: 10.1371/journal.pone.0013945.
[8]BRACHT T, HORN H, STRIK W, et al. White matter microstructure alterations of the medial forebrain bundle in melancholic depression[J]. J Affect Disord, 2014, 155: 186-193. DOI: 10.1016/j.jad.2013.10.048.
[9]WANG Y F, XU C, ZHANG A X, et al. White matter abnormalities in medication-nave adult patients with major depressive disorder: tract-based spatial statistical analysis[J]. Neuro Endocrinol Lett, 2014, 35(8): 697-702.
[10]XIA W P, ZHOU R B, ZHAO G Q, et al. Abnormal white matter integrity in Chinese young adults with first-episode medication-free anxious depression: A possible neurological biomarker of subtype major depressive disorder[J]. Neuropsychiatr Dis Treat, 2018, 14: 2017-2026. DOI: 10.2147/NDT.S169583.
[11]GIORGIO A, WATKINS K E, CHADWICK M, et al. Longitudinal changes in grey and white matter during adolescence[J]. Neuroimage, 2010, 49(1): 94-103. DOI: 10.1016/j.neuroimage.2009.08.003.
[12]GUO W B, LIU F, XUE Z M, et al. Altered white matter integrity in young adults with first-episode, treatment-naive, and treatment-responsive depression[J]. Neurosci Lett, 2012, 522(2): 139-144. DOI: 10.1016/j.neulet.2012.06.027.
[13]LI L J, MA N, LI Z X, et al. Prefrontal white matter abnormalities in young adult with major depressive disorder: A diffusion tensor imaging study[J]. Brain Res, 2007, 1168: 124-128. DOI: 10.1016/j.brainres.2007.06.094.
[14]ZOU K, HUANG X Q, LI T, et al. Alterations of white matter integrity in adults with major depressive disorder: A magnetic resonance imaging study[J]. J Psychiatry Neurosci, 2008, 33(6): 525-530. 
[15]林崇德. 发展心理学 [M]. 2版. 北京: 人民教育出版社, 2008: 370-372.
LIN C D. Developmental psychology[M]. 2nd ed. Beijing: People Education Press, 2008: 370-372.
[16]BREEDVELT J J F, KANDOLA A, KOUSOULIS A A, et al. What are the effects of preventative interventions on major depressive disorder (MDD) in young adults? A systematic review and meta-analysis of randomized controlled trials[J]. J Affect Disord, 2018, 239: 18-29. DOI: 10.1016/j.jad.2018.05.010.
[17]LAI C H, WU Y T. Alterations in white matter micro-integrity of the superior longitudinal fasciculus and anterior thalamic radiation of young adult patients with depression[J]. Psychol Med, 2014, 44(13): 2825-2832. DOI: 10.1017/S0033291714000440.
[18]OTA M, NODA T, SATO N, et al. White matter abnormalities in major depressive disorder with melancholic and atypical features: A diffusion tensor imaging study[J]. Psychiatry Clin Neurosci, 2015, 69(6): 360-368. DOI: 10.1111/pcn.12255.
[19]DALBY R B, FRANDSEN J, CHAKRAVARTY M M, et al. Depression severity is correlated to the integrity of white matter fiber tracts in late-onset major depression[J]. Psychiatr Res, 2010, 184(1): 38-48. DOI:10.1016/j.pscychresns.2010.06.008.
[20]WANG X H, PATHAK S, STEFANEANU L, et al. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain[J]. Brain Struct Funct, 2016, 221(4): 2075-2092. DOI: 10.1007/s00429-015-1028-5.
[21]JIANG J, ZHAO Y J, HU X Y, et al. Microstructural brain abnormalities in medication-free patients with major depressive disorder: A systematic review and meta-analysis of diffusion tensor imaging[J]. J Psychiatry Neurosci, 2017, 42(3): 150-163.
[22]SEXTON C E, MACKAY C E, EBMEIER K P. A systematic review of diffusion tensor imaging studies in affective disorders[J]. Biol Psychiatr, 2009, 66(9): 814-823. DOI: 10.1016/j.biopsych.2009.05.024.
[23]BESSETTE K L, NAVE A M, CAPRIHAN A, et al. White matter abnormalities in adolescents with major depressive disorder[J]. Brain Imaging Behav, 2014, 8(4): 531-541. DOI: 10.1007/s11682-013-9274-8.
[24]JIANG W Y, GONG G L, WU F, et al. The papez circuit in first-episode, treatment-naive adults with major depressive disorder: combined atlas-based tract-specific quantification analysis and voxel-based analysis[J]. PLoS ONE, 2015, 10(5): e0126673. DOI: 10.1371/journal.pone.0126673.
[25]LIU X D, WATANABE K, KAKEDA S, et al. Relationship between white matter integrity and serum cortisol levels in drug-naive patients with major depressive disorder: diffusion tensor imaging study using tract-based spatial statistics[J]. Br J Psychiatr, 2016, 208(6): 585-590. DOI: 10.1192/bjp.bp.114.155689.
[26]TEKIN S, CUMMINGS J L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: An update[J]. J Psychosom Res, 2002, 53(2): 647-654.
[27]BIESBROEK J M, KUIJF H J, VAN DER GRAAF Y, et al. Association between subcortical vascular lesion location and cognition: A voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study[J].PLoS ONE, 2013, 8(4): e60541. DOI: 10.1371/journal.pone.0060541.
[28]SPALLETTA G, FAGIOLI S, CALTAGIRONE C, et al. Brain microstructure of subclinical apathy phenomenology in healthy individuals[J]. Hum Brain Mapp, 2013, 34(12): 3193-3203. DOI: 10.1002/hbm.22137.
[29]COENEN V A, PANKSEPP J, HURWITZ T A, et al. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression[J]. J Neuropsychiatr Clin Neurosci, 2012, 24(2): 223-236. DOI: 10.1176/appi.neuropsych.11080180.
[30]SEXTON C E, MACKAY C E, EBMEIER K P. A systematic review of diffusion tensor imaging studies in affective disorders[J].Biol Psychiatry, 2009, 66(9): 814-823. DOI: 10.1016/j.biopsych.2009.05.024.
[31]KAKEDA S, WATANABE K, KATSUKI A, et al. Genetic effects on white matter integrity in drug-naive patients with major depressive disorder: A diffusion tensor imaging study of 17 genetic loci associated with depressive symptoms[J]. Neuropsychiatr Dis Treat, 2019, 15: 375-383. DOI: 10.2147/NDT.S190268.
[32]SACCHET M D, PRASAD G, FOLAND-ROSS L C, et al. Structural abnormality of the corticospinal tract in major depressive disorder[J]. Biol Mood Anxiety Disord, 2014, 4: 8. DOI: 10.1186/2045-5380-4-8.
[33]HALL A C G, JOHN E. Textbook of medical physiology[M]. 11th ed.Philadelphia: W.B. Saunders, 2005: 687-690.
[34]GALEA M P, DARIAN-SMITH I. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections[J].Cereb Cortex, 1994, 4(2): 166-194. DOI: 10.1093/cercor/4.2.166.
[35]CULLEN K R, BROWN R, SCHREINER M W, et al. White matter microstructure relates to lassitude but not diagnosis in adolescents with depression[J]. Brain Imaging Behav, 2019. [Epub ahead of print]. DOI: 10.1007/s11682-019-00078-8. 
[36]KROENKE K, SPITZER R L. The PHQ-9: A new depression diagnostic and severity measure[J]. Psychiatric Annals, 2002, 32(9): 509-515. DOI: 10.3928/0048-5713-20020901-06.
[37]BERGAMINO M, KUPLICKI R, VICTOR T A, et al. Comparison of two different analysis approaches for DTI free-water corrected and uncorrected maps in the study of white matter microstructural integrity in individuals with depression[J]. Hum Brain Mapp, 2017, 38(9): 4690-4702. DOI: 10.1002/hbm.23694.
[38]KIM S H, KWAK K, HYUN J W, et al. Diffusion tensor imaging of normal-appearing white matter in patients with neuromyelitis optica spectrum disorder and multiple sclerosis[J]. Eur J Neurol, 2017, 24(7): 966-973. DOI: 10.1111/ene.13321.

相似文献/References:

[1]黎雪梅,况利.抗抑郁药物促进抑郁模型大鼠行为和海马血管内皮细胞生长因子的表达[J].第三军医大学学报,2009,31(05):430.
 LI Xue-mei,KUANG Li.Effect of antidepressant on behavior and vascular endothelial cell growth factor in hippocampus of rat model of depression[J].J Third Mil Med Univ,2009,31(18):430.
[2]罗维,瞿广素.护理心理干预对慢性心力衰竭合并抑郁症患者心功能及生活质量的影响[J].第三军医大学学报,2012,34(18):1918.
[3]李大奇,况利,王敏建.不同电休克方法对抑郁模型大鼠海马干扰素-γ受体表达的影响[J].第三军医大学学报,2007,29(15):1494.
 LI Da-qi,KUANG Li,WANG Min-jian.Effects of electroshock on interferon gamma receptor expression in hippocampus of depressed rats[J].J Third Mil Med Univ,2007,29(18):1494.
[4]牟君,谢鹏.海马神经发生障碍——抑郁症发病机制的新观念[J].第三军医大学学报,2006,28(11):1264.
[5]戴若以,顾小红,张云东,等.阻断促肾上腺皮质激素释放激素1受体对慢性束缚应激致大鼠类抑郁症状的改善[J].第三军医大学学报,2015,37(22):2273.
 Dai Ruoyi,Gu Xiaohong,Zhang Yundong,et al.Blocking corticotropin-releasing hormone 1 receptor regulates expression of BDNF and GAP-43 in hypothalamus of depression rats induced by chronic restraint stress[J].J Third Mil Med Univ,2015,37(18):2273.
[6]曾妍,艾明,陈建梅,等.焦虑抑郁障碍共病患者的特质焦虑与其血清BDNF水平的相关性研究[J].第三军医大学学报,2011,33(18):1967.
 Zeng Yan,Ai Ming,Chen Jianmei,et al.Correlation between trait anxiety and serum brain-derived neurotrophic factor level in patients with combined anxiety and depression[J].J Third Mil Med Univ,2011,33(18):1967.
[7]赵晓晶,冯正直,王新,等.具体性自传体记忆任务下抑郁症患者的功能磁共振成像特点[J].第三军医大学学报,2010,32(19):2121.
 Zhao Xiaojing,Feng Zhengzhi,Wang Xin,et al.Characteristics of functional magnetic resonance image in activated brain areas under specific autobiographical memory in patients with depression[J].J Third Mil Med Univ,2010,32(18):2121.
[8]周俊英,陶媛,李力,等.伴有抑郁症状孕妇睡眠质量分析[J].第三军医大学学报,2010,32(05):471.
 Zhou Junying,Tao Yuan,Li Li,et al.Analysis of sleep quality in pregnant women with depression[J].J Third Mil Med Univ,2010,32(18):471.
[9]吴胜,张代江.米氮平与帕罗西汀治疗伴躯体症状抑郁症的对照分析[J].第三军医大学学报,2009,31(22):2290.
[10]王晓霞,蒋成刚,冯正直.抑郁症患者局部脑功能静息态磁共振成像研究[J].第三军医大学学报,2011,33(10):1052.
 Wang Xiaoxia,Jiang Chenggang,Feng Zhengzhi.Regional brain functional connectivity of depressed patients with restingstate functional magnetic resonance imaging[J].J Third Mil Med Univ,2011,33(18):1052.

更新日期/Last Update: 2019-09-21