[1]王冠宇,刘畅,周昌龙,等.白藜芦醇经PI3K/Akt途径促进脑出血后大鼠轴突再生[J].第三军医大学学报,2019,41(16):1527-1537.
 WANG Guanyu,LIU Chang,ZHOU Changlong,et al.Resveratrol promotes axonal regeneration via PI3K/Akt pathway in rats after intracerebral hemorrhage[J].J Third Mil Med Univ,2019,41(16):1527-1537.
点击复制

白藜芦醇经PI3K/Akt途径促进脑出血后大鼠轴突再生
(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第16期
页码:
1527-1537
栏目:
基础医学
出版日期:
2019-08-30

文章信息/Info

Title:
Resveratrol promotes axonal regeneration via PI3K/Akt pathway in rats after intracerebral hemorrhage
作者:
王冠宇刘畅周昌龙夏小辉张光伟谭兴卫崔敏贺学农
重庆医科大学附属永川医院神经外科
Author(s):
 
Department of Neurosurgery, Yongchuan Hospital Affiliated to Chongqing Medical University, Chongqing, 402160, China
 
关键词:
白藜芦醇脑出血轴突PI3K/AktAMPK
Keywords:
resveratrol intracerebral hemorrhage axons PI3K/Akt AMPK
分类号:
R282.71;R285.5;R743.34
文献标志码:
A
摘要:

目的 探讨白藜芦醇通过PI3K/Akt途径调控AMPKα通路,促进脑出血后大鼠轴突再生的机制。方法 选取220~250 g雄性SD大鼠,按随机数字表法分为假手术组、脑出血组、小剂量白藜芦醇组(20 mg/kg)、大剂量白藜芦醇组(40 mg/kg)、抑制剂组(PI3K/Akt抑制剂LY294002),采用自体血注射法对SD大鼠建立脑出血模型。评估大鼠神经功能缺损,HE染色观察脑组织病理变化,ELISA检测各组大鼠氧化应激相关指标,Western blot、免疫组化和免疫荧光检测各组大鼠神经丝蛋白200(neurofilament 200,NF200)、微管相关蛋白-2(microtubule-associated protein-2,MAP-2)、髓鞘碱性蛋白(myelin basic protein,MBP)、生长相关蛋白(growth-associated protein 43,GAP43)及蛋白激酶B(protein kinase B,PKB or Akt)、腺苷酸活化蛋白激酶α(AMP-activated protein kinase alpha,AMPKα)、糖原合酶激酶-3β(glycogen synthase kinase 3 beta,GSK-3β)的表达。结果脑出血后大鼠的神经功能缺损程度显著升高,HE染色可见明显病理损伤,氧化应激产物水平明显增高,使用白藜芦醇干预之后损伤程度减轻,且大剂量白藜芦醇组效果明显优于小剂量白藜芦醇组(P<0.05)。Western blot与免疫组化检测显示:与脑出血组比较,注射白藜芦醇后大鼠脑出血区域组织中NF200和MAP-2表达明显升高,且大剂量白藜芦醇组效果明显优于小剂量白藜芦醇组(P<0.05)。Western blot与免疫荧光结果显示:注射白藜芦醇后MBP表达显著高于脑出血组,大剂量白藜芦醇组效果明显优于小剂量白藜芦醇组(P<0.05),且白藜芦醇通过AMPK作用于轴突。对通路蛋白进一步进行Western blot检测,与脑出血组比较,注射白藜芦醇后大鼠脑出血区域组织中p-AMPKα、p-GSK-3β表达降低,NF200、MAP-2、MBP、GAP43和p-Akt表达升高,且大剂量白藜芦醇组效果明显优于小剂量白藜芦醇组(P<0.05),使用抑制剂后可逆转白藜芦醇干预后的效应。结论 白藜芦醇可促进脑出血后大鼠的轴突再生,对神经功能的恢复有明显改善,其机制可能与通过PI3K/Akt途径抑制AMPK通路有关。

Abstract:

Objective To investigate the mechanism by which resveratrol (RES) promotes axonal regeneration in rats after intracerebral hemorrhage (ICH) and explore the role of the PI3K/Akt pathway that regulates the AMPKα pathway. MethodsA total of 126 male adult SD rats were randomized into sham-operated group (n=30), ICH group (n=30), low-dose (20 mg/kg) RES group (n=30), high-dose (40 mg/kg) RES group and PI3K/Akt inhibitor (LY294002) group (n=6). Rat models of ICH were established by stereotaxic injection of autologous blood into the basal ganglia with subsequent treatments as indicated. The neurological deficits of the rats were evaluated, and the pathological changes in the brain tissues were observed with HE staining. The parameters of oxidative stress in each group were detected using ELISA. Western blotting, immunohistochemistry and immunofluorescence assay were performed to detect the expressions of neurofilament 200 (NF200), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), growth-associated protein 43 (GAP43), protein kinase B (PKB or Akt), AMP-activated protein kinase alpha (AMPKα) and glycogen synthase kinase 3 beta (GSK-3β) in the brain tissue. ResultsThe rats exhibited significant neurological deficits, obvious brain pathologies, and elevated oxidative stress level following ICH. Intervention with RES, especially at the high dose, obviously alleviated the injuries of the brain tissue. Western blotting and immunohistochemistry showed that compared with those in ICH group, the expression of NF200 and MAP-2 increased significantly in the hemorrhagic region in rats receiving RES treatment, and the effect was more obvious in the high-dose group than in the low-dose group (P<0.05). Immunofluorescence assay showed that RES treatment of the rats, especially at the high dose, obviously enhanced MBP expression in the brain tissue as compared with that in ICH group (P<0.05), and AMPK was found to mediate the effect of RES on the axons. The results of Western blotting further confirmed that RES treatment significantly decreased the expressions of p-AMPKα and p-GSK-3β and increased the expressions of NF200, MAP-2, MBP, GAP43 and p-Akt in the hemorrhagic brain tissues of the rats, as compared with those in ICH group, and high-dose RES produced significantly stronger effects on these proteins (P<0.05). These effects of RES were obviously reversed by the application of PI3K/Akt inhibitor in the rat models of ICH. ConclusionRES can promote axonal regeneration and neurological function recovery in rats after ICH possibly by down-regulating the AMPK pathway through the PI3K/Akt pathway.

参考文献/References:

[1]CRAMER S C. Repairing the human brain after stroke. Ⅱ. Restorative therapies[J]. Ann Neurol, 2008, 63(5): 549-560. DOI: 10.1002/ana.21412.
[2]JARDIM F R, DE ROSSI F T, NASCIMENTO M X, et al. Resveratrol and brain mitochondria: A review[J]. Mol Neurobiol, 2018, 55(3): 2085-2101. DOI: 10.1007/s12035-017-0448-z.
[3]XU H E, HUA Y, ZHONG J, et al. Resveratrol delivery by albumin nanoparticles improved neurological function and neuronal damage in transient middle cerebral artery occlusion rats[J]. Front Pharmacol, 2018, 9: 1403. DOI: 10.3389/fphar.2018.01403. 
[4]GAO Y, FU R R, WANG J, et al. Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via Nrf2/HO-1 pathway[J]. Pharm Biol, 2018, 56(1): 440-449. DOI: 10.1080/13880209.2018.1502326.
[5]XU X L, LIU X D, YANG Y C, et al. Resveratrol inhibits the development of obesity-related osteoarthritis via the TLR4 and PI3K/Akt signaling pathways[J]. Connect Tissue Res, 2019: 1-12. DOI: 10.1080/03008207.2019.1601187.
[6]TAO K, MATSUKI N, KOYAMA R. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon[J]. Dev Neurobiol, 2014, 74(6): 557-573. DOI: 10.1002/dneu.22149. 
[7]SINNETT S E, BRENMAN J E. Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators[J]. Pharmacol Ther, 2014, 143(1): 111-118. DOI: 10.1016/j.pharmthera.2014.02.008.
[8]SEIRA O, DEL RO J A. Glycogen synthase kinase 3 beta (GSK3β) at the tip of neuronal development and regeneration[J]. Mol Neurobiol, 2014, 49(2): 931-944. DOI: 10.1007/s12035-013-8571-y.
[9]AL-DAMRY N T, ATTIA H A, AL-RASHEED N M, et al. Sitagliptin attenuates myocardial apoptosis via activating LKB-1/AMPK/Akt pathway and suppressing the activity of GSK-3β and p38α/MAPK in a rat model of diabetic cardiom-yopathy[J]. Biomed Pharmacother, 2018, 107: 347-358. DOI: 10.1016/j.biopha.2018.07.126. 
[10]LIU C M, YANG H X, MA J Q, et al. Role of AMPK pathway in lead-induced endoplasmic reticulum stress in kidney and in paeonol-induced protection in mice[J]. Food Chem Toxicol, 2018, 122: 87-94. DOI: 10.1016/j.fct.2018.10.024.
[11]PEI H T, JIANG T, LIU G F, et al. The effect of minimally invasive hematoma aspiration on the JNK signal transduction pathway after experimental intracerebral hemorrhage in rats[J]. Int J Mol Sci, 2016, 17(5): E710. DOI: 10.3390/ijms17050710. 
[12]刘畅, 王冠宇, 周昌龙, 等. 黄体酮促进脑出血后轴突再生及其相关机制[J]. 第三军医大学学报,2019,41(13):1222-1231. DOI:10.16016/j.1000-5404.201812150.
LIU C, WANG G Y, ZHOU C L, et al. Progesterone promotes axonal regeneration after cerebral hemorrhage and related mechanisms in rats[J]. J Third Mil Med Univ, 2019, 41(13): 1222-1231. DOI:10.16016/j.1000-5404.201812150.
[13]DANCAUSE N, BARBAY S, FROST S B, et al. Extensive cortical rewiring after brain injury[J]. J Neurosci, 2005, 25(44): 10167-10179. DOI: 10.1523/JNEUROSCI.3256-05.2005.
[14]LIU Q Q, ZHU D S, JIANG P E, et al. Resveratrol synergizes with low doses of L-DOPA to improve MPTP-induced Parkinson disease in mice[J]. Behav Brain Res, 2019, 367: 10-18. DOI: 10.1016/j.bbr.2019.03.043.
[15]KHOURY N, XU J, STEGELMANN S D, et al. Resveratrol preconditioning induces genomic and metabolic adaptations within the long-term window of cerebral ischemic tolerance leading to bioenergetic efficiency[J]. Mol Neurobiol, 2018. [Epub ahead of print]. DOI: 10.1007/s12035-018-1380-6. 
[16]LIN K L, LIN K J, WANG P W, et al. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy[J]. Free Radic Res, 2018, 52(11/12): 1371-1386. DOI: 10.1080/10715762.2018.1489128.
[17]LISCHKA K, LADEL S, LUKSCH H, et al. Expression patterns of ion channels and structural proteins in a multimodal cell type of the avian optic tectum[J]. J Comp Neurol, 2018, 526(3): 412-424. DOI: 10.1002/cne.24340. 
[18]MERCERN-MARTNEZ D, ALMAGUER-MELIAN W, ALBERTI-AMADOR E, et al. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats[J]. Brain Res Bull, 2018, 142: 8-17. DOI: 10.1016/j.brainresbull.2018.06.008.
[19]OZGEN H, SCHRIMPF W, HENDRIX J, et al. The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix[J]. PLoS ONE, 2014, 9(7): e101834. DOI: 10.1371/journal.pone.0101834. 
[20]SHI X H, CHEN Y H, NADEEM L, et al. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy[J]. J Neuroinflamm, 2013, 10: 69. DOI: 10.1186/1742-2094-10-69.
[21]LEI J R, CHEN Q X. Resveratrol attenuates brain damage in permanent focal cerebral ischemia via activation of PI3K/Akt signaling pathway in rats[J]. Neurol Res, 2018, 40(12): 1014-1020. DOI: 10.1080/01616412.2018.1509826.
[22]DINDA B, DINDA M, KULSI G, et al. Therapeutic potentials of plant iridoids in Alzheimer’s and Parkinson’s diseases: A review[J]. Eur J Med Chem, 2019, 169: 185-199. DOI: 10.1016/j.ejmech.2019.03.009.
[23]JIANG J J, LIU C M, ZHANG B Y, et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression[J]. Cell Death Dis, 2015, 6: e1865. DOI: 10.1038/cddis.2015.239.
[24]TESIC V, PEROVIC M, ZALETEL I, et al. A single high dose of dexamethasone increases GAP-43 and synaptophysin in the hippocampus of aged rats[J]. Exp Gerontol, 2017, 98: 62-69. DOI: 10.1016/j.exger.2017.08.010.
[25]HOLAHAN M R. A shift from a pivotal to supporting role for the growth-associated protein (GAP-43) in the coordination of axonal structural and functional plasticity[J]. Front Cell Neurosci, 2017, 11: 266. DOI: 10.3389/fncel.2017.00266.
[26]GRASSELLI G, STRATA P. Structural plasticity of climbing fibers and the growth-associated protein GAP-43[J]. Front Neural Circuits, 2013, 7: 25. DOI: 10.3389/fncir.2013.00025.
 

相似文献/References:

[1]李志伟.微创血肿清除术治疗脑出血的诊治体会[J].第三军医大学学报,2007,29(21):2107.
[2]文华海.脑出血3例误诊分析[J].第三军医大学学报,2007,29(15):1522.
[3]崔洁,曹参祥,郑静,等.脑出血大鼠脑组织MDA、TNF-α含量变化及其依达拉奉干预效应的研究[J].第三军医大学学报,2007,29(11):1032.
 CUI Jie,CAO Can-xiang,ZHENG Jing,et al.Changes of TNF-alpha and malondialdehyde content in brain tissue and therapeutic effect of edaravone on rats after intracerebral hemorrhage[J].J Third Mil Med Univ,2007,29(16):1032.
[4]邹显巍,吴珊.大鼠脑出血后脑肺组织NF-κB的表达及其在急性肺损伤中的作用[J].第三军医大学学报,2007,29(19):1859.
 ZOU Xian-wei,WU Shan.Expression of NF-κB in the brain and lung and its role in acute lung injury following intracerebral hemorrhage of rats[J].J Third Mil Med Univ,2007,29(16):1859.
[5]袁建国,向强,熊建琼,等.急诊微创介入术对高血压脑出血的救治研究[J].第三军医大学学报,2006,28(19):1989.
[6]廖群纷,梁德胜,王为民,等.脑出血患者血清S100b蛋白与神经功能损害的相关性研究[J].第三军医大学学报,2005,27(14):1494.
[7]王苇,张新江,殷小平,等.脑出血超早期血肿周围病变的MRI研究及其临床意义[J].第三军医大学学报,2005,27(05):422.
[8]周宇燕.高血压脑出血颅内血肿微创清除术后再出血的观察与护理[J].第三军医大学学报,2005,27(04):290.
[9]汤可,周青,周敬安,等.脑出血破入脑室的高龄重症患者死亡危险因素分析[J].第三军医大学学报,2011,33(16):1773.
[10]何程,林爱国,王俊伟,等.术中B超辅助下经外侧裂-岛叶入路显微手术治疗基底节区脑出血[J].第三军医大学学报,2010,32(13):1468.

更新日期/Last Update: 2019-08-22