[1]郭艳军,王淑为.HeLa细胞上调Beclin1/自噬通路对多柔比星治疗抵抗[J].第三军医大学学报,2019,41(13):1216-1221.
 GUO Yanjun,WANG Shuwei.HeLa cells up-regulate Beclin1/autophagy pathway to confer resistance to doxorubicin[J].J Third Mil Med Univ,2019,41(13):1216-1221.
点击复制

HeLa细胞上调Beclin1/自噬通路对多柔比星治疗抵抗(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第13期
页码:
1216-1221
栏目:
基础医学
出版日期:
2019-07-15

文章信息/Info

Title:
HeLa cells up-regulate Beclin1/autophagy pathway to confer resistance to doxorubicin
作者:
郭艳军1王淑为2
100049 北京,航天中心医院妇产科1;100048 北京,解放军总医院第六医学中心2
Author(s):
GUO Yanjun1 WANG Shuwei2

1Department of Obstetrics and Gynecology, Aerospace Center Hospital, Beijing, 100049; 2Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China

关键词:
多柔比星HeLa细胞Beclin1自噬
Keywords:
doxorubicin HeLa cells Beclin1 autophagy
分类号:
R737.33; R966; R979.14
文献标志码:
A
摘要:

目的观察多柔比星(doxorubicin, DOX)在HeLa细胞中诱导保护性自噬反应的作用,探讨HeLa细胞对DOX治疗抵抗的可能机制。方法用不同剂量(0、2、4、8、16 mg/L)多柔比星处理人宫颈癌HeLa细胞,CCK-8法检测细胞活力,定量PCR检测DOX处理对自噬相关基因mRNA的影响,Western blot分析DOX处理对自噬相关蛋白表达的影响,用siRNA沉默Beclin1,CCK-8法检测DOX对HeLa细胞活力的影响,把含有Beclin1启动子片段的报告质粒转入HeLa细胞,通过报告基因系统检测DOX处理对Beclin1启动子活性的影响,用转录抑制剂放线菌素D预处理HeLa细胞,然后用定量PCR分析DOX处理不同时间对Beclin1 mRNA稳定性的影响。结果DOX可剂量依赖性抑制HeLa细胞活力,并诱导细胞的保护性自噬反应,抑制自噬可增强HeLa细胞对DOX的敏感性。DOX可特异性地升高HeLa细胞中Beclin1的mRNA和蛋白水平(P<0.05)。沉默Beclin1可增强DOX对HeLa细胞的杀伤效果。DOX处理不影响HeLa细胞中Beclin1的启动子活性(P>0.05),但显著增强其mRNA的稳定性(P<0.05)。结论DOX可能通过增强Beclin1/自噬通路而导致HeLa细胞对其耐受。

Abstract:

ObjectiveTo investigate the role of doxorubicin (DOX) in the induction of protective autophagy in HeLa cells and explore the possible mechanism of DOX resistance. MethodsHeLa cells were treated with DOX at different doses (0, 2, 4, 8 and 16 mg/L) for 24 h, and the cell viability was measured by CCK-8 assay. The mRNA levels of autophagy-related genes were assessed using qRT-PCR, and the protein levels were detected by Western blotting. After Beclin1 was knockdowned through siRNA, the effect of DOX on cell viability was detected by CCK-8 assay. The effect of DOX on the promoter activity of Beclin1 in HeLa cells was assessed using the reporter gene assay after transfection with a plasmid containing Beclin1 promoter. The stability of Beclin1 mRNA was analyzed with qPCR in HeLa cells after treatment with DOX alone or DOX combined with the transcription inhibitor actinomycin D. ResultsDOX inhibited the cell viability in HeLa cells in a dose-dependent manner. DOX also induced protective autophagy in HeLa cells. Inhibition of autophagy enhanced the sensitivity of HeLa cells to DOX. DOX treatment resulted in special up-regulation of Beclin1 at both mRNA and protein levels in HeLa cells (P<0.05). Knockdown of Beclin1 significantly increased DOX-triggered proliferation suppression in HeLa cells. DOX treatment did not significantly affect the promoter activity of Beclin1, but obviously lowered the mRNA stability of Beclin1 in HeLa cells. ConclusionDOX may induce drug resistance in HeLa cells through enhancing the Beclin1/autophagy pathway.

参考文献/References:

[1]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI:10.3322/caac.21492.
[2]COHEN P A, JHINGRAN A, OAKNIN A, et al. Cervical cancer[J]. Lancet, 2019, 393(10167): 169-182. DOI:10.1016/S0140-6736(18)32470-X.
[3]RIVANKAR S. An overview of doxorubicin formulations in cancer therapy[J]. J Cancer Res Ther, 2014, 10(4): 853-858. DOI:10.4103/0973-1482.139267.
[4]MOHAJERI M, SAHEBKAR A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review[J]. Crit Rev Oncol Hematol, 2018, 122: 30-51. DOI:10.1016/j.critrevonc.2017.12.005.
[5]SAHA S, PANIGRAHI D P, PATIL S, et al. Autophagy in health and disease: A comprehensive review[J]. Biomed Pharmacother, 2018, 104: 485-495. DOI:10.1016/j.biopha.2018.05.007.
[6]PRIETO-DOMNGUEZ N, GARCIA-MEDIAVILLA M V, SANCHEZ-CAMPOS S, et al. Autophagy as a molecular target of flavonoids underlying their protective effects in human disease[J]. Curr Med Chem, 2018, 25(7): 814-838. DOI:10.2174/0929867324666170918125155.
[7]TAYLOR M A, DAS B C, RAY S K. Targeting autophagy for combating chemoresistance and radioresistance in glioblastoma[J]. Apoptosis, 2018, 23(11/12): 563-575. DOI:10.1007/s10495-018-1480-9.
[8]YUNIARTI L, MUSTOFA M, ARYANDONO T, et al. Synergistic action of 1, 2-epoxy-3 (3- (3, 4-dimethoxyphenyl)- 4H-1-benzopiyran-4-on) propane with doxorubicin and cisplatin through increasing of p53, TIMP-3, and microRNA-34a in cervical cancer cell line (HeLa)[J]. Asian Pac J Cancer Prev, 2018, 19(10): 2955-2962. DOI:10.22034/APJCP.2018.19.10.2955.
[9]XIA Y, XU T, ZHAO M, et al. Delivery of doxorubicin for human cervical carcinoma targeting therapy by folic acid-modified selenium nanoparticles[J]. Int J Mol Sci, 2018, 19(11): E3582. DOI:10.3390/ijms19113582.
[10]QIU F, ZHAO X. Study on the sensitivity of primary tumor cells of patients with cervical cancer to chemotherapeutic combinations[J]. J BUON, 2018, 23(1): 117-123.
[11]MUTLU P, YALIN AZARKAN S, TAGHAVI POURIANAZAR N, et al. Determination of the relationship between doxorubicin resistance and Wnt signaling pathway in HeLa and K562 cell lines[J]. EXCLI J, 2018, 17: 386-398. DOI:10.17179/excli2018-1129.
[12]WAGNER W, KANIA K D, BLAUZ A, et al. The lactate receptor (HCAR1/GPR81) contributes to doxorubicin chemoresistance via ABCB1 transporter up-regulation in human cervical cancer HeLa cells[J]. J Physiol Pharmacol, 2017, 68(4): 555-564.
[13]XU J, PAN Q, JU W.Ras inhibition by zoledronic acid effectively sensitizes cervical cancer to chemotherapy[J].Anticancer Drugs, 2019. [Epub ahead of print].DOI: 10.1097/CAD.0000000000000779.
[14]GUAN S, LU J X, ZHAO Y L, et al. TAK1 inhibitor 5Z-7-oxozeaenol sensitizes cervical cancer to doxorubicin-induced apoptosis[J]. Oncotarget, 2017, 8(20): 33666-33675. DOI:10.18632/oncotarget.16895.
[15]GUO K Y, HAN L L, LI X Y, et al. Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway[J]. Oncotarget, 2017, 8(69): 114123-114135. DOI:10.18632/oncotarget.23166.
[16]DAGLIOGLU C, KACI F N. Cascade therapy with doxorubicin and survivin-targeted tailored nanoparticles: An effective alternative for sensitization of cancer cells to chemotherapy[J]. Int J Pharm, 2019, 561: 74-81. DOI:10.1016/j.ijpharm.2019.02.036.
[17]WU Y R, NI Z H, YAN X J, et al. Targeting the MIR34C-5p-ATG4B-autophagy axis enhances the sensitivity of cervical cancer cells to pirarubicin[J]. Autophagy, 2016, 12(7): 1105-1117. DOI:10.1080/15548627.2016.1173798.
[18]XIONG H, NI Z, HE J, et al. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells[J]. Oncogene, 2017, 36(25): 3528-3540. DOI:10.1038/onc.2016.521.
[19]KRANZBHLER B, SALEMI S, MORTEZAVI A, et al. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells[J]. Prostate, 2019, 79(2):206-214. DOI: 10.1002/pros.23725.
[20]SUN W L, WANG L, LUO J, et al. Ambra1 modulates the sensitivity of breast cancer cells to epirubicin by regulating autophagy via ATG12[J]. Cancer Sci, 2018, 109(10): 3129-3138. DOI:10.1111/cas.13743.
[21]ZHANG N, WU Y R, LYU X L, et al. HSF1 upregulates ATG4B expression and enhances epirubicin-induced protective autophagy in hepatocellular carcinoma cells[J]. Cancer Lett, 2017, 409: 81-90. DOI:10.1016/j.canlet.2017.08.039.
[22]CHEN C, LU L, YAN S C, et al. Autophagy and doxorubicin resistance in cancer[J]. Anticancer Drugs, 2018, 29(1): 1-9. DOI:10.1097/CAD.0000000000000572.
[23]FERNANDES , AZEVEDO M M, PEREIRA O, et al. Proteolytic systems and AMP-activated protein kinase are critical targets of acute myeloid leukemia therapeutic approaches[J]. Oncotarget, 2015, 6(31): 31428-31440. DOI:10.18632/oncotarget.2947.
[24]DI FAZIO P, MATROOD S. Targeting autophagy in liver cancer[J]. Transl Gastroenterol Hepatol, 2018, 3: 39. DOI:10.21037/tgh.2018.06.09.
[25]WU C L, LIU J F, LIU Y, et al. Beclin1 inhibition enhances paclitaxel-mediated cytotoxicity in breast cancer in vitro and in vivo[J]. Int J Mol Med, 2019, 43(4): 1866-1878. DOI:10.3892/ijmm.2019.4089.
[26]GANDHI M, CAUDRON-HERGER M, DIEDERICHS S. RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs[J]. Nat Struct Mol Biol, 2018, 25(12): 1070-1076. DOI:10.1038/s41594-018-0155-0.

相似文献/References:

[1]石孟琼,刘雄,周继刚,等.南赤瓟提取物诱导宫颈癌HeLa细胞凋亡及作用机制研究[J].第三军医大学学报,2012,34(18):1844.
 Shi Mengqiong,Liu Xiong,Zhou Jigang,et al.Apoptosis of cervix cancer HeLa cells induced by Thldiantha nudiflora Hemsl extract[J].J Third Mil Med Univ,2012,34(13):1844.
[2]曾建华,钟玲,徐波.地塞米松对宫颈癌移植瘤生长及凋亡的影响[J].第三军医大学学报,2007,29(20):1985.
 ZENG Jian-hua,ZHONG Ling,XU Bo.Effect of Dexamethasone on tumor volume and apoptosis of transplanted HeLa cells in mice[J].J Third Mil Med Univ,2007,29(13):1985.
[3]赖国旗,邱宗荫,向廷秀,等.肿瘤坏死因子相关凋亡诱导配体诱导HeLa细胞凋亡的差异蛋白质组分析[J].第三军医大学学报,2008,30(04):318.
 LAI Guo-qi,QIU Zong-yin,XIANG Ting-xiu,et al.Differential proteomic analysis of HeLa cells induced by TRAIL[J].J Third Mil Med Univ,2008,30(13):318.
[4]余抒,顾江,曾浩,等.肠出血性大肠埃希菌O157∶H7黏附HeLa细胞模型的建立[J].第三军医大学学报,2007,29(20):1933.
 YU Shu,GU Jiang,ZENG Hao,et al.Establishment of an enterohemorrhagic Escherichia coli O157∶H7 attached HeLa cell model[J].J Third Mil Med Univ,2007,29(13):1933.
[5]周玮,熊正爱,刘颖,等.不可逆性电穿孔致HeLa细胞凋亡与坏死的作用研究[J].第三军医大学学报,2010,32(18):1941.
 Zhou Wei,Xiong Zhengai,Liu Ying,et al.Apoptosis and necrosis of HeLa cells induced by irreversible electroporation[J].J Third Mil Med Univ,2010,32(13):1941.
[6]韩建红,赖国旗,陈妮,等.HSP70 siRNA对宫颈癌HeLa细胞HSP70表达及细胞增殖与凋亡的影响[J].第三军医大学学报,2010,32(04):342.
 Han Jianhong,Lai Guoqi,Chen Ni,et al.Effect of HSP70 siRNA on expression of heat shock protein 70 in human cervical cancer Hela cells and their proliferation and apoptosis[J].J Third Mil Med Univ,2010,32(13):342.
[7]陈济,潘巍巍,成海恩,等.细胞周期素E的干扰RNA对HeLa细胞增殖的抑制作用[J].第三军医大学学报,2007,29(22):2135.
 CHEN Ji,PAN Wei-wei,CHENG Hai-en,et al.Inhibition of HeLa cell proliferation by cyclinE RNA interference[J].J Third Mil Med Univ,2007,29(13):2135.
[8]李鑫,温泉,周云飞,等.FNBP1参与HeLa细胞的形态控制与生长调控[J].第三军医大学学报,2013,35(19):2046.
 Li Xin,Wen Quan,Zhou Yunfei,et al.FNBP1 is involved in morphology control and growth regulation in HeLa cells[J].J Third Mil Med Univ,2013,35(13):2046.
[9]杨晓姗,林雅军,魏洁,等.重组人p66Shc腺病毒抑制HeLa细胞增殖的机制研究[J].第三军医大学学报,2014,36(19):1991.
 Yang Xiaoshan,Lin Yajun,Wei Jie,et al.Recombinant adenovirus of human p66Shc inhibits proliferation in HeLa cells[J].J Third Mil Med Univ,2014,36(13):1991.
[10]陈华萍,陈旭昕,董伟杰,等.Rab26 诱导宫颈癌HeLa细胞凋亡并抑制其迁移[J].第三军医大学学报,2016,38(24):2576.
 Chen Huaping,Chen Xuxin,Dong Weijie,et al.Rab26 induces apoptosis and suppresses migration of HeLa cells[J].J Third Mil Med Univ,2016,38(13):2576.

更新日期/Last Update: 2019-07-08