[1]杨志强,季平,白丽云,等.不同厚度的个性化镁合金网的有限元分析[J].第三军医大学学报,2019,41(15):1506-1510.
 YANG Zhiqiang,JI Ping,BAI Liyun,et al.Finite element analysis of individualized magnesium alloy meshes with different thickness[J].J Third Mil Med Univ,2019,41(15):1506-1510.
点击复制

不同厚度的个性化镁合金网的有限元分析(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第15期
页码:
1506-1510
栏目:
生物医学工程
出版日期:
2019-08-15

文章信息/Info

Title:
Finite element analysis of individualized magnesium alloy meshes with different thickness
作者:
杨志强季平白丽云王超
重庆医科大学附属口腔医院口腔颌面外科,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室
Author(s):
YANG Zhiqiang JI Ping BAI Liyun WANG Chao

Department of Oral and Maxillofacial Surgery, Chongqing Key Laboratory of Oral Diseases and Biomedical Science, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China

关键词:
三维有限元分析个性化镁合金网引导骨再生
Keywords:
three-dimensional finite element analysis individualized magnesium alloy mesh guided bone regeneration
分类号:
R318.08; R319; R322.71
文献标志码:
A
摘要:
目的 利用三维有限元分析不同厚度镁合金网在骨愈合过程中的应力应变分布,从生物力学角度为个性化镁合金网的设计提供参考。方法 提取下颌骨CBCT数据,重建C2-D2骨缺损区三维模型,设计骨植入材料及不同厚度镁合金网的三维有限元模型,分析其应力应变分布。结果 镁合金网的应力应变随着厚度的增加而减小。骨愈合进程中骨植入材料的应力逐渐增大应变逐渐变小,不成熟骨及成熟骨的应变均小于断裂应变。镁合金网降解的过程中应力先减小后增大。结论 0.3 mm、0.4 mm厚度镁合金网负荷承载能力较小,不能满足较大面积引导骨再生的需求。0.5 mm厚度镁合金网的最大等效应力在安全范围内,在降解的过程中强度足够,能引导良好的骨愈合,可满足临床需要。
 
Abstract:
ObjectiveTo investigate the stress-strain distribution of magnesium alloy meshes with different thickness during bone healing by three-dimensional finite element analysis in order to provide a reference for the design of personalized magnesium alloy mesh. MethodsAfter the cone-beam computed tomography (CBCT) data of a patient with tooth loss of C2-D2 and large alveolar defect were extracted, three-dimensional reconstruction was performed on the bone defect area. Three-dimensional finite element models of bone implant material and magnesium alloy meshes with different thickness were designed, and their stress-strain distributions were analyzed. ResultsThe strain and stress showed a decreasing trend with the increase of the thickness of magnesium alloy mesh. During the process of bone healing, the stress of the bone implant material was gradually increased while the strain was gradually decreased. The strain of immature and mature bone was less than the strain at break. The stress was decreased first and then increased in the degradation of magnesium alloy mesh. ConclusionMagnesium alloy mesh of 0.3 and 0.4 mm thickness can only bear a small load, and can’t meet the need of large area guided bone regeneration (GBR). The maximum equivalent stress of 0.5 mm-thickness magnesium alloy mesh is within the safe range, and the mesh has enough strength in the process of degradation, and can guide good bone healing and meet the clinical needs of GBR.
 

参考文献/References:

[1]GUGLIELMOTTI M B, OLMEDO D G, CABRINI R L. Research on implants and osseointegration[J]. Periodontology, 2000, 2019, 79(1): 178-189. DOI:10.1111/prd.12254. 
[2]WESSING B, URBAN I, MONTERO E, et al. A multicenter randomized controlled clinical trial using a new resorbable non-cross-linked collagen membrane for guided bone regeneration at dehisced single implant sites: interim results of a bone augmentation procedure[J]. Clin Oral Implants Res, 2017, 28(11): e218-e226. DOI:10.1111/clr.12995. 
[3]ABDEL-HADY GEPREEL M, NIINOMI M. Biocompatibility of Ti-alloys for long-term implantation[J]. J Mech Behav Biome Mater, 2013, 20: 407-415. DOI:10.1016/j.jmbbm.2012.11.014. 
[4]KAMRANI S, FLECK C. Biodegradable magnesium alloys as temporary orthopaedic implants: A review[J]. Biometals, 2019, 32(2): 185-193. DOI:10.1007/s10534-019-00170-y.
封[5]LIU C, REN Z, XU Y D, et al. Biodegradable magnesium alloys developed as bone repair materials: A review[J]. Scanning, 2018, 2018: 9216314. DOI:10.1155/2018/9216314. 
[6]POGORIELOV M, HUSAK E, SOLODIVNIK A, et al. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements[J]. Interv Med Appl Sci, 2017, 9(1): 27-38. DOI:10.1556/1646.9.2017.1.04. 
[7]AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 68: 948-963. DOI:10.1016/j.msec.2016.06.020. 
[8]DING W J. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials[J]. Regen Biomater, 2016, 3(2): 79-86. DOI:10.1093/rb/rbw003. 
[9]QIN H, ZHAO Y C, AN Z Q, et al. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211-220. DOI:10.1016/j.biomaterials.2015.02.096. 
[10]CUCCHI A, VIGNUDELLI E, NAPOLITANO A, et al. Evaluation of complication rates and vertical bone gain after guided bone regeneration with non-resorbable membranes versus titanium meshes and resorbable membranes. A randomized clinical trial[J]. Clin Implant Dent Relat Res, 2017, 19(5): 821-832. DOI:10.1111/cid.12520. 
[11]SARRAFPOUR B, SWAIN M, LI Q, et al. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: A finite element analysis[J]. PLoS ONE, 2013, 8(3): e58803. DOI:10.1371/journal.pone.0058803. 
[12]SINGH S, UTREJA A K, SANDHU N, et al. An innovative miniature bite force recorder[J]. IJCPD, 2011, 4: 113-118. DOI:10.5005/jp-journals-10005-1093. 
[13]张其美. 基于有限元分析的Mg-Zn-Y-Nd合金骨螺钉的结构优化[D]. 郑州: 郑州大学, 2017.
ZHANG Q M. Structural optimization of mg-zn-Y-nd alloy bone screws based on finite element analysis[D]. Zhengzhou: Zhengzhou University, 2017. 
[14]FROST H M. A 2003 update of bone physiology and Wolff’s Law for clinicians[J]. Angle Orthod, 2004, 74(1): 3-15. DOI: 10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2 
[15]RAKHMATIA Y D, AYUKAWA Y, FURUHASHI A, et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications[J]. J Prosthodont Res, 2013, 57(1): 3-14. DOI:10.1016/j.jpor.2012.12.001.
 

更新日期/Last Update: 2019-08-13