[1]张宇,王威巍,左国华,等.粪便细菌移植对非酒精性脂肪性肝病大鼠肝功能和脂代谢紊乱的影响[J].第三军医大学学报,2019,41(13):1200-1205.
 ZHANG Yu,WANG Weiwei,ZUO Guohua,et al.Effects of fecal microbiota transplantation on liver function and lipid metabolism disorder in rats with nonalcoholic fatty liver disease[J].J Third Mil Med Univ,2019,41(13):1200-1205.
点击复制

粪便细菌移植对非酒精性脂肪性肝病大鼠肝功能和脂代谢紊乱的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第13期
页码:
1200-1205
栏目:
基础医学
出版日期:
2019-07-15

文章信息/Info

Title:
Effects of fecal microbiota transplantation on liver function and lipid metabolism disorder in rats with nonalcoholic fatty liver disease
作者:
张宇王威巍左国华黄小兵李靖
陆军军医大学(第三军医大学)第二附属医院肝胆外科
Author(s):
ZHANG Yu WANG Weiwei ZUO Guohua HUANG Xiaobing LI Jing

Department of Hepatobiliary Surgery, Second Affiliated Hospital, Army Military Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
非酒精性脂肪性肝病粪便细菌移植肝功能脂代谢胰岛素抵抗
Keywords:
nonalcoholic fatty liver disease fecal microbiota transplantation liver function lipid metabolism insulin resistance
分类号:
Q939.121;R459.9;R575.505
文献标志码:
A
摘要:

目的建立大鼠非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)模型,检测FMT干预对模型大鼠肝功能和脂代谢的影响,初步探讨粪便细菌移植的临床意义。方法 选择24只SD大鼠,分为4组,每组6只。正常对照组:正常饲料,0.2 mL/d生理盐水灌胃;其余3组采用高脂饲料喂养建立大鼠非酒精性脂肪肝模型;模型组:0.2 mL/d生理盐水灌胃;益生菌组:0.2 mL/d益生菌溶液灌胃(其中含益生菌2.7×109);FMT组:0.2 mL/d粪便细菌溶液灌胃(其中含粪便细菌2.7×109);持续8周。记录大鼠的生存情况,比较移植前后体质量、肝功能及血清胰岛素、白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)的变化。结果大鼠均未出现死亡;与模型组比较,FMT组粪便细菌移植后大鼠肝指数明显下降(P<0.01),肝功能明显好转,血浆丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)显著降低(P<0.01);与模型组比较,脂代谢紊乱在粪便细菌移植后得到明显改善,LDL胆固醇(LDL-C)、甘油三酯(TG)、总胆固醇(T-CHO)明显下降,高密度脂蛋白胆固醇(HDL-C)显著回升(P<0.01);空腹血糖及胰岛素抵抗指数在移植后明显下降(P<0.01);与模型组比较,FMT组大鼠炎症标志物IL-6和TNF-α显著降低(P<0.01)。结论 对大鼠进行人类粪便细菌移植是可行的;粪便细菌移植可以改善非酒精性脂肪性肝病大鼠的肝功能,纠正脂代谢紊乱。

Abstract:

ObjectiveTo establish a model of nonalcoholic fatty liver disease (NAFLD) in rats, and investigate the effects of fecal microbiota transplantation (FMT) intervention on liver function and lipid metabolism in model rats and explore its clinical significance. MethodsA total of 24 SD rats were selected and a rat NAFLD model was established by high-fat diet feeding. The rats were divided into 4 groups, that is, group A (normal control group, 0.2 mL/d normal saline), group B (NAFLD model group, 0.2 mL/d normal saline gavage), group C (probiotics group, 0.2 mL/d probiotic solution gavage, containing probiotics 2.7×109) and group D (FMT group, 0.2 mL/d fecal bacteria solution, intragastric administration of 2.7×109 fecal bacteria). After 8 weeks of treatment, the survival of the rats was recorded. The body weight, liver function, and changes in serum insulin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) before and after treatment were compared in the groups. ResultsThere was no death in all the experimental rats. Compared with the model group, FMT induced significantly decrease in the liver index (P<0.01), improved liver function, and lower plasma ALT and AST levels (P<0.01). Lipid metabolism disorder was also significantly improved after FMT intervention, including obviously decreased LDL cholesterol (LDL-C), triglyceride (TG), total cholesterol (T-CHO) and elevated high-density lipoprotein cholesterol (HDL-C) when compared with the levels in the model group (P<0.01). Fasting blood glucose and insulin resistance index were also decreased significantly after the intervention (P<0.01). What’s more, serum contents of IL-6 and TNF-α were markedly lower in rats receiving FMT than those in the model group (P<0.01). ConclusionHuman FMT is feasible in rats. It can improve liver function and correct lipid metabolism disorder in NAFLD rats.
 

参考文献/References:


[1]KHAN R S, NEWSOME P N. NAFLD in 2017: Novel insights into mechanisms of disease progression[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(2): 71-72. DOI:10.1038/nrgastro.2017.181.
[2]GEORGE J, ANSTEE Q, RATZIU V, et al. NAFLD: the evolving landscape[J]. J Hepatol, 2018, 68(2): 227-229. DOI:10.1016/j.jhep.2017.11.016.
[3]YOUNOSSI Z, ANSTEE Q M, MARIETTI M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. DOI:10.1038/nrgastro.2017.109.
[4]ADAMS L A, WATERS O R, KNUIMAN M W, et al. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: An eleven-year follow-up study[J]. Am J Gastroenterol, 2009, 104(4): 861-867. DOI:10.1038/ajg.2009.67.
[5]KANWAR P, NELSON J E, YATES K, et al. Association between metabolic syndrome and liver histology among NAFLD patients without diabetes[J]. BMJ Open Gastroenterol, 2016, 3(1): e000114. DOI:10.1136/bmjgast-2016-000114.
[6]LIM J S, MIETUS-SNYDER M, VALENTE A, et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(5): 251-264. DOI:10.1038/nrgastro.2010.41.
[7]NOBILI V, CIANFARANI S, AGOSTONI C. Programming, metabolic syndrome, and NAFLD: the challenge of transforming a vicious cycle into a virtuous cycle[J]. J Hepatol, 2010, 52(6): 788-790. DOI:10.1016/j.jhep.2010.02.010.
[8] ROMERO-GMEZ M, ZELBER-SAGI S, TRENELL M. Treatment of NAFLD with diet, physical activity and exercise[J]. J Hepatol, 2017, 67(4): 829-846. DOI:10.1016/j.jhep.2017.05.016.
[9]KAO D N, ROACH B, SILVA M, et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial[J]. JAMA, 2017, 318(20): 1985-1993. DOI:10.1001/jama.2017.17077.
[10]RAO K, YOUNG V B, MALANI P N. Capsules for fecal microbiota transplantation in recurrent clostridium difficile infection: the new way forward or a tough pill to swallow?[J]. JAMA, 2017, 318(20): 1979-1980. DOI:10.1001/jama.2017.17969.
[11]王威巍, 张宇, 尤楠, 等. 粪便细菌移植对肝性脑病大鼠肝功能及血氨的影响[J]. 第三军医大学学报, 2017, 39(13): 1321-1326. DOI:10.16016/j.1000-5404.201610152.
WANG W W, ZHANG Y, YOU N, et al. Effects of fecal microbiota transplantation on liver function and blood ammonia in hepatic encephalopathy rats[J]. J Third Mil Med Univ, 2017, 39(13): 1321-1326. DOI:10.16016/j.1000-5404.201610152.
[12]SHELDON R D, PADILLA J, JENKINS N T, et al. Chronic NOS inhibition accelerates NAFLD progression in an obese rat model[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(6): G540-G549. DOI:10.1152/ajpgi.00247.2014.
[13]PASARN M, ABRALDES J G, RODRGUEZ-VILARRUPLA A, et al. Insulin resistance and liver microcirculation in a rat model of early NAFLD[J]. J Hepatol, 2011, 55(5): 1095-1102. DOI:10.1016/j.jhep.2011.01.053.
[14]HENAO-MEJIA J, ELINAV E, JIN C C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185. DOI:10.1038/nature10809.
[15]SANDERS M E, AKKERMANS L M, HALLER D, et al. Safety assessment of probiotics for human use[J]. Gut Microbes, 2010, 1(3): 164-185. DOI:10.4161/gmic.1.3.12127.
[16]TORRES D M, HARRISON S A. NAFLD: Predictive value of ALT levels for NASH and advanced fibrosis[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(9): 510-511. DOI:10.1038/nrgastro.2013.138.
[17]TAN T C, CRAWFORD D H, JASKOWSKI L A, et al. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301(5): G865-G876. DOI:10.1152/ajpgi.00150.2011.
[18]MUSSO G, GAMBINO R, CASSADER M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD)[J]. Prog Lipid Res, 2009, 48(1): 1-26. DOI:10.1016/j.plipres.2008.08.001.
[19]CALDWELL S H, ARGO C K, AL-OSAIMI A M. Therapy of NAFLD: insulin sensitizing agents[J]. J Clin Gastroenterol, 2006, 40(Suppl 1): S61-S66. DOI:10.1097/01.mcg.0000168647.71411.48.
[20]ALLARD J P, AGHDASSI E, MOHAMMED S, et al. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): A cross-sectional study[J]. J Hepatol, 2008, 48(2): 300-307. DOI:10.1016/j.jhep.2007.09.009.
[21]GAGGINI M, CARLI F, ROSSO C, et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance[J]. Hepatology, 2018, 67(1): 145-158. DOI:10.1002/hep.29465.
[22]PLANER J D, PENG Y Q, KAU A L, et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice[J]. Nature, 2016, 534(7606): 263-266. DOI:10.1038/nature17940.
[23]RIDAURA V K, FAITH J J, REY F E, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150): 1241214. DOI:10.1126/science.1241214.

更新日期/Last Update: 2019-07-08