[1]李怡敏,袁琳,杨生永,等.干扰素诱导肝癌细胞ADAR1的表达模式及HBV复制抑制[J].第三军医大学学报,2019,41(14):1336-1342.
 LI Yimin,YUAN Lin,YANG Shengyong,et al.Effect of interferons on expression of adenosine deaminase acting on RNA 1 and hepatitis B virus replication in human hepatocellular carcinoma cells in vitro[J].J Third Mil Med Univ,2019,41(14):1336-1342.
点击复制

干扰素诱导肝癌细胞ADAR1的表达模式及HBV复制抑制
(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第14期
页码:
1336-1342
栏目:
基础医学
出版日期:
2019-07-30

文章信息/Info

Title:
Effect of interferons on expression of adenosine deaminase acting on RNA 1 and hepatitis B virus replication in human hepatocellular carcinoma cells in vitro
作者:
李怡敏袁琳杨生永胡源胡接力黄爱龙涂增
重庆医科大学:感染性疾病分子生物学教育部重点实验室,基础医学院病原生物学教研室,分子医学与肿瘤研究中心
Author(s):
LI Yimin YUAN Lin YANG Shengyong HU Yuan HU Jieli HUANG Ailong TU Zeng 

Key Laboratory of Molecular Biology on Infectious Diseases of Ministry of Education; Department of Pathogen Biology, Molecular Medicine and Tumor Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China

关键词:
干扰素ADAR1肝癌细胞乙型肝炎病毒
Keywords:
interferon adenosine deaminase acting on RNA 1 hepatocellular carcinoma cells hepatitis B virus
分类号:
R735.7;R966;R977.6
文献标志码:
A
摘要:

目的 探讨Ⅰ型干扰素(IFN-α、IFN-β)和Ⅱ型干扰素(IFN-γ)在肝癌细胞中诱导ADAR1(P110和P150)的表达模式及对HBV复制的作用。方法 不同浓度IFN-α(0、200、500、1 000、2 000 U/mL)、IFN-β(0、200、1 000 U/mL)和IFN-γ(0、200、1 000 U/mL)分别处理肝癌细胞(Huh7和HepG2),Western blot和RT-qPCR检测肝癌细胞中IFN作用后ADAR1的表达变化;Huh7细胞瞬时转染HBV复制型质粒,IFN-α作用后,Southern blot分析HBV DNA复制中间体水平。结果 Ⅰ型IFN(IFN-α、IFN-β)作用Huh7和HepG2细胞后,ADAR1 P110蛋白水平增加(P<0.05),同时ADAR1 P150表达水平明显增高(P<0.01),且ADAR1 P150的表达呈现IFN浓度依赖性;Ⅱ型IFN(IFN-γ)作用Huh7和HepG2细胞后,ADAR1 P110和P150蛋白表达水平没有发生明显变化。IFN-α明显抑制Huh7细胞中HBV复制(P<0.05),与浓度梯度呈负相关。结论 Ⅰ型IFN可诱导肝癌细胞中ADAR1 P150表达,IFN-α抑制Huh7细胞中HBV复制,其作用可能与ADAR1相关。

Abstract:

Objective To investigate the effect of type Ⅰ interferons (IFN-α and IFN-β) and type Ⅱ interferon (IFN-γ) on the expression of adenosine deaminase acting on RNA 1 (ADAR1, P110 and P150) and hepatitis B virus (HBV) replication in hepatocellular carcinoma (HCC) cells. Methods Western blotting and qRT-PCR were used to detect the expression of ADAR1 in human HCC cell lines HepG2 and Huh7 following treatment with different concentrations of IFN-α, IFN-β or IFN-γ. Southern blotting was employed to detect the changes in HBV DNA level in response to IFN-α treatment in Huh7 and HepG2 cells transfected with HBV replication plasmids. ResultsIn Huh7 and HepG2 cells, treatments with IFN-α and IFN-β significantly increased the protein expression of ADAR1 P150 in a time- and dose-dependent manner (P<0.01) and also obviously augmented the protein level of ADAR1 P110; IFN-γ did not significantly affected the expression of either ADAR1 P110 or ADAR1 P150. IFN-α treatment dose-dependently inhibited HBV DNA replication in Huh7 cells (P<0.05). Conclusion Type Ⅰ interferons time- and dose-dependently increase the expression of ADAR1 in Huh7 and HepG2 cells, suggesting a possible role of ADAR1 in mediating the anti-HBV effect of IFN-α.

参考文献/References:

[1]SCHNEIDER W M, CHEVILLOTTE M D, RICE C M. Interferon-stimulated genes: a complex web of host defenses [J]. Annu Rev Immunol, 2014, 32: 513-545. DOI: 10.1146/annurev-immunol-032713-120231.
[2]TRPO C, CHAN H L, LOK A. Hepatitis B virus infection[J]. Lancet, 2014, 384(9959): 2053-2063. DOI: 10.1016/s0140-6736(14)60220-8.
[3]SAMUEL C E. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral[J]. Virology, 2011, 411(2): 180-193. DOI: 10.1016/j.virol.2010.12.004.
[4]CHAN T H, LIN C H, QI L, et al. A disrupted RNA editing balance mediated by ADARs (Adenosine Deaminases that act on RNA) in human hepatocellular carcinoma[J]. Gut, 2014, 63(5): 832-843. DOI:10.1136/gutjnl-2012-304037.
[5]LI Z, OKONSKI K M, SAMUEL C E. Adenosine deaminase acting on RNA 1 (ADAR1) suppresses the induction of interferon by measles virus[J]. J Virol, 2012, 86(7): 3787-3794. DOI:10.1128/JVI.06307-11.
[6]LI Z, WOLFF K C, SAMUEL C E. RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment[J]. Virology, 2010, 396(2): 316-322. DOI:10.1016/j.virol.2009.10.026.
[7]CROAGH C M, DESMOND P V, BELL S J. Genotypes and viral variants in chronic hepatitis B: A review of epidemiology and clinical relevance[J]. World J Hepatol, 2015, 7(3): 289-303. DOI: 10.4254/wjh.v7.i3.289.
[8]SATO S, LI K, KAMEYAMA T, et al. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus[J]. Immunity, 2015, 42(1): 123-132. DOI: 10.1016/j.immuni.2014.12.016.
[9]LV M, ZHANG B, SHI Y, et al. Identification of BST-2/tetherin-induced hepatitis B virus restriction and hepatocyte-specific BST-2 inactivation[J]. Sci Rep, 2015, 5: 11736. DOI: 10.1038/srep11736. 
[10]YAN R, ZHAO X, CAI D, et al. The interferon-inducible protein tetherin inhibits hepatitis B virus virion secretion[J]. J Virol, 2015, 89(18): 9200-9212. DOI: 10.1128/JVI.00933-15. 
[11]LEONG C R, FUNAMI K, OSHIUMI H, et al. Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo[J]. Oncotarget, 2016, 7(42): 68179-68193. DOI: 10.18632/oncotarget.11907.
[12]LIU Y, NIE H, MAO R, et al. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA[J]. PLoS Pathog, 2017, 13(4): e1006296. DOI:10.1371/journal.ppat.1006296. 
[13]TAN G, XIAO Q, SONG H, et al. Type I IFN augments IL-27-dependent TRIM25 expression to inhibit HBV replication[J]. Cell Mol Immunol, 2018, 15(3): 272-281. DOI:10.1038/cmi.2016.67.
[14]CHEN Y, HU J, CAI X, et al. APOBEC3B edits HBV DNA and inhibits HBV replication during reverse transcription[J]. Antiviral Res, 2018, 149: 16-25. DOI: 10.1016/j.antiviral.2017.11.006.
[15]BONVIN M, ACHERMANN F, GREEVE I, et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication[J]. Hepatology, 2006, 43(6): 1364-1374. DOI: 10.1002/hep.21187.
[16]HU J, QIAO M, CHEN Y, et al. Cyclin E2-CDK2 mediate SAMHD1 phosphorylation to abrogate its restriction of HBV replication in hepatoma cells[J]. FEBS Lett, 2018, 592(11): 1893-1904. DOI: 10.1002/1873-3468.13105.
[17]JEONG G U, PARK I H, AHN K, et al. Inhibition of hepatitis B virus replication by a dNTPase-dependent function of the host restriction factor SAMHD1[J]. Virology, 2016, 495: 71-78. DOI: 10.1016/j.virol.2016.05.001.
[18]LI L, LEI Q S, ZHANG S J, et al. suppression of USP18 potentiates the anti-HBV activity of interferon alpha in HepG2.2.15 cells via JAK/STAT signaling[J]. PLoS ONE, 2016, 11(5): e0156496. DOI: 10.1371/journal.pone.0156496.
[19]LI Y, LI S, DUAN X. et al. Interferon-stimulated gene 15 conjugation stimulates hepatitis B virus production independent of type I interferon signaling pathway in vitro [J]. Mediators Inflamm, 2016, 2016: 7417648. DOI: 10.1155/2016/7417648
[20]KOEBERLEIN B, ZUR HAUSEN A, BEKTAS N, et al. Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver[J]. Virus Res, 2010, 148(1/2): 51-59. DOI: 10.1016/j.virusres.2009.12.003.
[21]郜衍周, 范红霞, 邱立鹏, 等. IFN-α对gp96的上调降低其抗HBV的效率[J]. 微生物学报, 2013, 53(8): 867-874.
HAO Y Z, FAN H X, QIU L P. et al IFN-α-induced gp96 upregulation negatively affects the anti-HBV efficiency of IFN-α [J]. Acta Microbiol Sinica, 2013, 53(8): 867-874.
[22]XIAO C, QIN B, CHEN L, et al. Preactivation of the interferon signalling in liver is correlated with nonresponse to interferon alpha therapy in patients chronically infected with hepatitis B virus[J]. J Viral Hepat, 2012, 19(2): e1-e10. DOI: 10.1111/j.1365-2893.2011.01471.x.
[23]HAN M, LI Y, WU W, et al. Altered expression of interferon-stimulated genes is strongly associated with therapeutic outcomes in hepatitis B virus infection[J]. Antiviral Res, 2017, 147: 75-85. DOI: 10.1016/j.antiviral.2017.10.003.
[24]WU X, SHI W, WU J, et al. A functional polymorphism in ADAR 1 gene affects HBsAg seroclearance both spontaneously and interferon induced[J]. Liver Int, 2014, 34(10): 1560-1565. DOI: 10.1111/liv.12444.
[25]李京源, 李涛, 朱席琳, 等. ADAR1通过RNA编辑上调ZNF655表达并促进人肝癌细胞系HepG2中HBV复制[J]. 基础医学与临床, 2018, 38(3): 312-316. DOI: 10.16352/j.issn.1001-6325.2018.03.006.
LI J Y, LI T, ZHU X L, et al. ADAR1 up-regulates ZNF655 expression via RNA editing and enhances HBV replication in HepG2 cell line[J]. Basic Clin Med, 2018, 38(3): 312-316. DOI: 10.16352/j.issn.1001-6325.2018.03.006.
[26]LI L, QIAN G, ZUO Y, et al. Ubiquitin-dependent turnover of adar1 is required for efficient antiviral activity of type Ⅰ interferon[J]. J Biol Chem, 2016, 291(48): 24974-24985. DOI: 10.1074/jbc.M116.737098.
 

更新日期/Last Update: 2019-07-22