[1]任平平,舒莉萍,王一慧,等.1-萘酚胚胎期暴露对斑马鱼发育的毒性作用[J].第三军医大学学报,2019,41(14):1321-1327.
 REN Pingping,SHU Liping,WANG Yihui,et al.Developmental toxicity of embryonic 1-naphthol exposure in zebrafish[J].J Third Mil Med Univ,2019,41(14):1321-1327.
点击复制

1-萘酚胚胎期暴露对斑马鱼发育的毒性作用
(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第14期
页码:
1321-1327
栏目:
基础医学
出版日期:
2019-07-30

文章信息/Info

Title:
Developmental toxicity of embryonic 1-naphthol exposure in zebrafish
作者:
任平平舒莉萍王一慧莫晶周艳华何志旭
贵州医科大学:儿科学教研室,组织工程与干细胞中心,中国医学科学院成体干细胞转化研究重点实验室;遵义医科大学儿科学教研室
Author(s):
REN Pingping SHU Liping WANG Yihui1 MO Jing ZHOU Yanhua HE Zhixu

Department of Pediatrics, Guizhou Medical University, 2Tissue Engineering and Stem Cell Center, Guizhou Medical University, Key Laboratory of Adult Stem Cell Transformation Research of Chinese Academy of Medical Sciences, Guiyang, Guizhou Province, 550004; Department of Pediatrics, Zunyi Medical University, Zunyi, Guizhou Province, 563006, China

关键词:
斑马鱼胚胎期1-萘酚发育毒性氧化应激
Keywords:
zebrafish embryonic stage 1-naphthol developmental toxicity oxidative stress
分类号:
]R321-33;R994.6;R996
文献标志码:
A
摘要:

目的 探讨1-萘酚(1-NAP)胚胎期暴露对斑马鱼发育的毒性作用,并对其可能的机制进行研究。方法 挑选斑马鱼受精卵,在受精后24 h(hours post fertilization,hpf)进行不同浓度(0、40、80、160、200 μmol/L)1-NAP暴露处理,观察并记录其处理至斑马鱼120 hpf时的畸形数和死亡数,计算畸形率、孵化率及半数致死浓度(IC50)。设置空白对照组,N-乙酰半胱氨酸(NAC)处理组,1-NAP处理组,NAC预处理组,检测幼鱼体内活性氧(ROS)、丙二醛(MDA)、还原型谷胱甘肽(GSH)和总巯基(-SH)含量以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性;通过Western blot法检测胚胎凋亡蛋白Caspase3、Bax的表达情况。结果 计算出1-NAP在斑马鱼胚胎的IC50为111.31 μmol/L,斑马鱼胚胎期暴露于高浓度1-萘酚(>80 μmol/L)导致死亡率和畸形率明显增加,孵化率明显降低,表现出发育毒性;50 μmol/L浓度1-NAP处理组 ROS 、MDA 含量明显升高,GSH、-SH水平明显降低,抗氧化酶CAT、SOD的活性受到抑制(P<0.001);胚胎凋亡蛋白Caspase3、Bax表达量增加;NAC(0.5 mmol/L)预处理组斑马鱼胚胎的畸形率明显降低,ROS、MDA 含量明显减少,GSH、-SH含量以及SOD、CAT活性有所恢复,凋亡蛋白Caspase3、Bax表达量明显降低。结论 1-萘酚胚胎期暴露对斑马鱼发育的毒性作用可能与1-萘酚诱导的氧化应激相关。

Abstract:

Objective To investigate the toxic effects of embryonic exposure to 1-naphthol (1-NAP) on zebrafish development and explore the possible mechanism. Methods Fertilized zebrafish eggs were exposed to 1-NAP at the concentrations of 40, 80, 160 and 200 μmol/L on 24 h post fertilization (hpf). The numbers of zebrafish malformations and deaths were recorded at 120 hpf, and the deformity rate, hatching rate and the median lethal concentration (IC50) of 1-NAP were calculated. The hatched zebrafish with or without embryonic exposure to 50 μmol/L 1-NAP and pretreatment with N-acetylcysteine (NAC) were examined for levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), total sulfhydryl, and activities of superoxide dismutase (SOD) and catalase (CAT); Western blotting was performed to detect the expression of Caspase-3 and Bax. ResultsThe IC50 of 1-NAP in zebrafish embryos was 111.31 μmol/L, and the zebrafish embryos exposed to high-concentration (>80 μmol/L) 1-NAP exhibited obviously increased mortality and deformity rates with a significantly reduced hatching rate, demonstrating significant developmental toxicity of 1-NAP. Embryonic exposure to 50 μmol/L 1-NAP significantly increased the levels of ROS and MDA, lowered the levels of GSH and total sulfhydryl, suppressed the activities of antioxidant enzymes CAT and SOD (P<0.001), and decreased the expression levels of Caspase-3 and Bax in the hatched zebrafish. The zebrafish embryos pretreated with 0.5 mmol/L NAC prior to 1-NAP exposure showed a significantly decreased abnormality rate with obviously lowered ROS and MDA levels, restoration of GSH and total sulfhydryl content and SOD and CAT activities, and obviously reduced expression levels of Caspase-3 and Bax. Conclusion The developmental toxicity of 1-NAP in zebrafish embryos is probably associated with enhanced oxidative stress induced by 1-NAP.

参考文献/References:

[1]YAN X L, HU X Y, CHEN T, et al. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67[J]. J Phys Chem Solid, 2017, 107: 50-54. DOI:10.1016/j.jpcs.2017.03.024.
[2]YANG X Z, ZHANG Y Z, WANG L P, et al. Preparation of a thermally modified diatomite and a removal mechanism for 1-naphthol from solution[J]. Water, 2017, 9(9): 651. DOI: 10.3390/w9090651. 
[3]HU W Y, MIN X B, LI X Y, et al. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp[J]. Environ Technol, 2019, 40(7): 835-842. DOI:10. 1080/09593330.2017.1408695. 
[4]QIANG Y, WANG W F, DHODARY B, et al. Zeolitic imidazolate framework 8 (ZIF-8) reinforced macroporous resin D101 for selective solid-phase extraction of 1-naphthol and 2-naphthol from phenol compounds[J]. Electrophoresis, 2017, 38(13/14): 1685-1692. DOI: 10.1002/elps.201600569. 
[5]ZHENG H L, GAO Y, ZHU K R, et al. Investigation of the adsorption mechanisms of Pb(Ⅱ) and 1-naphthol by β-cyclodextrin modified graphene oxide nanosheets from aqueous solution[J]. J Colloid Interface Sci, 2018, 530: 154-162. DOI: 10.1016/j.jcis. 2018.06.083. 
[6]MOLINA-ESPEJA P, CAELLAS M, PLOU F J, et al. Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution[J]. Chembiochem, 2016, 17(4): 341-349. DOI: 10.1002/cbic.201500493. 
[7]WANG C, YANG X, ZHENG Q, et al. Halobenzoquinone-induced developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos[J]. Environ Sci Technol, 2018, 52(18): 10590-10598. DOI: 10.1021/ acs.est.8b02831. 
[8]MU X Y, SHEN G M, HUANG Y, et al. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish[J]. Environ Pollut, 2017, 229: 312-320. DOI: 10.1016/j.envpol.2017.05.088. 
[9]胡荣英,孙琮杰,金璐,等.长春碱增加班马鱼肿瘤耐药基因abcb4的表达[J].基础医学与临床,2017,37(6):758-762.DOI:10.16352/j.issn.1001-6325.2017.06.003.
HU R Y, SUN C J, JIN L, et al. Vinblastine enhances the expression of tumor resistance gene abcb4 in zebrafish[J]. Basic Clin Med, 2017, 37(6): 758-762. DOI: 10.16352/j.issn.1001-6325.2017.06.003.
[10]MUGONI V, CAMPOREALE A, SANTORO M M. Analysis of oxidative stress in zebrafish embryos[J]. J Vis Exp, 2014 (89). DOI: 10. 3791/51328.
[11]FLIX L M, VIDAL A M, SERAFIM C, et al. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2018, 201: 730-739. DOI: 10.1016/j. chemosphere.2018.03.049. 
[12]WANG Z K, LI G Y, WU Q, et al. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish[J]. Chemosphere, 2019, 214: 598-605. DOI: 10.1016/j.chemosphere. 2018.09.103. 
[13]ALDERMAN S L, LEISHMAN E M, FUZZEN M L M, et al. Corticotropin-releasing factor regulates caspase-3 and may protect developing zebrafish from stress-induced apoptosis[J]. Gen Comp Endocrinol, 2018, 265: 207-213. DOI: 10.1016/j.ygcen. 2018.05.025. 
[14]ZENG C, SUN H, XIE P, et al. The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos[J]. Aquat Toxicol, 2014, 149: 25-32. DOI: 10.1016/j. aquatox.2014.01.021. 
[15]KHAYYAT A, TOBWALA S, HART M, et al. N-acetylcysteine amide, a promising antidote for acetaminophen toxicity[J]. Toxicol Lett, 2016, 241: 133-142. DOI: 10.1016/j.toxlet. 2015.11.008. 
[16]ZHAO S J, LIU Y, WANG F, et al. N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes[J]. Chemo-sphere, 2018, 204: 463-473. DOI: 10.1016/j.chemosphere.2018.04.020. 
[17]ZOU Y, ZHANG Y, HAN L W, et al. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae[J]. J Appl Toxicol, 2017, 37(7): 842-852. DOI: 10.1002/jat.3432. 
[18]USENKO C Y, ABEL E L, KUDELA M, et al. Comparison of PBDE congeners as inducers of oxidative stress in zebrafish[J]. Environ Toxicol Chem, 2015, 34(5): 1154-1160. DOI: 10.1002/etc.2922. 
[19]LIU H, GOONERATNE R, HUANG X, et al. A rapid in vivo zebrafish model to elucidate oxidative stress-mediated PCB126-induced apoptosis and developmental toxicity[J]. Free Radic Biol Med, 2015, 84: 91-102. DOI: 10.1016/j.freeradbiomed.2015.03.002. 
[20]NI H, PENG L, GAO X G, et al. Effects of maduramicin on adult zebrafish (Danio rerio): Acute toxicity, tissue damage and oxidative stress[J]. Ecotoxicol Environ Saf, 2019, 168: 249-259. DOI: 10.1016/j.ecoenv.2018.10.040. 
[21]KRAMER A C, WEBER J, ZHANG Y, et al. TP53 modulates oxidative stress in gata1+ erythroid cells[J]. Stem Cell Reports, 2017, 8(2): 360-372. DOI: 10.1016/j.stemcr.2016. 12.025. 
[22]PATRINOSTRO X, CARTER M L, KRAMER A C, et al. A model of glucose-6-phosphate dehydrogenase deficiency in the zebrafish[J]. Exp Hematol, 2013, 41(8): 697-710.e2. DOI: 10.1016/j.exphem.2013.04.002. 
 

更新日期/Last Update: 2019-07-22