[1]万林,程勇,王五艺,等.缺氧微环境下晚期糖基化终末产物对结肠癌HCT116细胞侵袭、迁移的影响[J].第三军医大学学报,2019,41(15):1453-1460.
 AN Lin,CHENG Yong,WANG Wuyi,et al.Advanced glycation end products enhance invasion and migration of colon cancer HCT116 cells in hypoxic microenvironment[J].J Third Mil Med Univ,2019,41(15):1453-1460.
点击复制

缺氧微环境下晚期糖基化终末产物对结肠癌HCT116细胞侵袭、迁移的影响(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第15期
页码:
1453-1460
栏目:
基础医学
出版日期:
2019-08-15

文章信息/Info

Title:
Advanced glycation end products enhance invasion and migration of colon cancer HCT116 cells in hypoxic microenvironment
作者:
万林程勇王五艺隆姝孜刘洪良周丽
重庆医科大学附属第一医院:胃肠外科,肿瘤科;广安市人民医院胃肠外科
Author(s):
AN Lin CHENG Yong WANG Wuyi LONG Shuzi LIU Hongliang ZHOU Li

Department of Gastrointestinal Surgery, Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016; Department of Gastrointestinal Surgery, Guang’an People’s Hospital, Guang’an, Sichuan Province, 638001, China, China

关键词:
晚期糖基化终末产物缺氧微环境结直肠癌HCT116细胞侵袭迁移上皮间质转化
Keywords:
advanced glycation end products hypoxic microenvironment colorectal neoplasms invasion migration epithelial-mesenchymal transition 
分类号:
R343; R737.023; R735.35
文献标志码:
A
摘要:

目的 研究在缺氧微环境下,晚期糖基化终末产物(advanced glycation end products, AGEs)对结肠癌HCT116细胞的增殖、侵袭、迁移及上皮间质转化(epithelial-mesenchymal transition, EMT)的影响。方法 用CCK-8法筛选出促进HCT116细胞增殖的最佳AGEs浓度(200 μg/mL),最佳作用时间为48 h。然后将HCT116细胞分为空白对照组、AGEs(200 μg/mL)组、缺氧组、缺氧+ AGEs(200 μg/mL)组。用流式细胞术检测细胞周期,用Transwell侵袭及迁移实验检测HCT116细胞体外侵袭及迁移能力。最后用Western blot方法检测HIF-1α、RAGE,EMT相关蛋白E-cadherin、N-cadherin、Vimentin以及侵袭相关蛋白MMP2的表达水平。结果 与空白对照组相比,缺氧微环境可促进HCT116细胞的增殖,但AGEs对HCT116细胞增殖的影响较小。体外侵袭迁移实验结果显示:与空白对照组相比,其余3组中细胞的侵袭及迁移能力逐渐增强。Western blot结果显示:HIF-1α在常氧环境下表达水平较低,在缺氧状态下表达水平显著升高;与此同时,在缺氧状态下,加入AGEs后,HIF-1α表达进一步升高。在常氧和缺氧环境中,AGEs均能增加RAGE的表达量,但缺氧环境下更明显。与空白对照组相比,其余3组中MMP2、N-cadherin、Vimentin表达逐渐升高,E-cadherin表达逐渐降低。结论 在缺氧环境下AGEs能够进一步增强HCT116细胞的侵袭、迁移能力,但对HCT116细胞增殖的影响较小。

Abstract:

Objective To investigate the effects of advanced glycation end products (AGEs) on the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of colon cancer HCT116 cells in hypoxic microenvironment. MethodsThe optimal AGEs concentration (200 μg/mL) and treatment time (48 h) for promoting the proliferation of HCT116 cells were determined through a screening test with CCK-8 assay and used in subsequent experiment. HCT116 cells were treated with AGEs, hypoxia, or their combination, and the cell cycle changes were detected using flow cytometry; the changes in the invasive and migration abilities of the cells in vitro were assessed using Transwell chamber invasion and migration assays. The expressions of HIF-1α, RAGE, E-cadherin, N-cadherin, vimentin and MMP2 proteins in the treated cells were determined with Western blotting. ResultsCompared with the blank control cells, HCT116 cells exposed to a hypoxic microenvironment showed an increased proliferative activity, but AGEs alone did not significantly affect the cell proliferation. The cells treated with AGEs, hypoxia, and their combination all exhibited enhanced invasion and migration abilities compared with the blank control cells. The results of Western blotting showed that the expression level of HIF-1α, which was low in HCT116 cells in normoxic condition, was increased significantly in a hypoxic condition, and increased further after exposure of the cells to both AGEs and hypoxia. The expression of RAGE was increased after AGEs exposure of the cells in both normal and hypoxic environments, and the increase was more prominent in a hypoxic condition. Exposure to AGEs, hypoxia, and both all resulted in increased expressions of MMP2, N-cadherin and vimentin but lowered expression of E-cadherin in the cells. ConclusionAGEs can further enhance the invasive and migration abilities but has little effect on the proliferation of HCT116 cells exposed to a hypoxic environment.

参考文献/References:

[1]ZIMMET P, ALBERTI K G, MAGLIANO D J, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies[J]. Nat Rev Endocrinol, 2016, 12(10): 616-622. DOI: 10.1038/nrendo.2016.105. 
[2]BUCALA R. Diabetes, aging, and their tissue complications[J]. J Clin Invest, 2014, 124(5): 1887-1888. DOI: 10.1172/JCI75224. 
[3]ALEXANDER K L, MEJIA C A, JORDAN C, et al. Differential receptor for advanced glycation end products expression in preeclamptic, intrauterine growth restricted, and gestational diabetic placentas[J]. Am J Reprod Immunol, 2016, 75(2): 172-180. DOI: 10.1111/aji.12462. 
[4]DHANI N, FYLES A, HEDLEY D, et al. The clinical significance of hypoxia in human cancers[J]. Semin Nucl Med, 2015, 45(2): 110-121. DOI: 10.1053/j.semnuclmed. 2014.11.002. 
[6]GREENALD D, JEYAKANI J, PELSTER B, et al. Genome-wide mapping of Hif-1α binding sites in zebrafish[J]. BMC Genomics, 2015, 16: 923. DOI: 10.1186/ s12864-015-2169-x. 
[7]CHOUDHRY H, HARRIS A L. Advances in hypoxia-inducible factor biology[J]. Cell Metab, 2018, 27(2): 281-298. DOI: 10.1016/j.cmet.2017.10.005. 
[8]ASAI H, HIRATA J, WATANABE-AKANUMA M. Indoxyl glucuronide, a protein-bound uremic toxin, inhibits hypoxia-inducible factor-dependent erythropoietin expression through activation of aryl hydrocarbon receptor[J]. Biochem Biophys Res Commun, 2018, 504(2): 538-544. DOI: 10.1016/j.bbrc.2018.09.018. 
[9]CHEN Z, ZHU Y D, DONG Y F, et al. Overexpression of TrpC5 promotes tumor metastasis via the HIF-1α-Twist signaling pathway in colon cancer[J]. Clin Sci, 2017, 131(19): 2439-2450. DOI: 10.1042/CS20171069. 
[10]CHOI B J, PARK S A, LEE S Y, et al. Hypoxia induces epithelial-mesenchymal transition in colorectal cancer cells through ubiquitin-specific protease 47-mediated stabilization of Snail: A potential role of Sox9[J]. Sci Rep, 2017, 7(1): 15918. DOI: 10.1038/s41598-017-15139-5. 
[11]ZHANG W J, SHI X P, PENG Y, et al. HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer[J]. PLoS ONE, 2015, 10(6): e0129603. DOI: 10.1371/journal.pone.0129603.
[12]SONOSHITA M, ITATANI Y, KAKIZAKI F, et al. Promotion of colorectal cancer invasion and metastasis through activation of NOTCH-DAB1-ABL-RHOGEF protein TRIO[J]. Cancer Discov, 2015, 5(2): 198-211. DOI: 10.1158/2159-8290.CD-14-0595. 
[13]RANKIN E B, GIACCIA A J. Hypoxic control of metastasis[J]. Science, 2016, 352(6282): 175-180. DOI: 10.1126/science.aaf4405. 
[14]BAHRAMI A, AMERIZADEH F, SHAHIDSALES S, et al. Therapeutic potential of targeting wnt/β-catenin pathway in treatment of colorectal cancer: rational and progress[J]. J Cell Biochem, 2017, 118(8): 1979-1983. DOI: 10.1002/jcb.25903. 
[15]ZHAO J K, OU B C, HAN D P, et al. Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways[J]. Mol Cancer, 2017, 16: 70. DOI: 10.1186/s12943-017-0629-4. 
[16]伍鑫, 程勇, 庞云, 等. 终末糖基化产物对结肠癌SW620细胞EMT及肿瘤干细胞标志物的影响[J]. 中国肿瘤生物治疗杂志, 2016, 23(3): 355-359. DOI: 10.3872/j.issn.1007-385X.2016.03.010.
WU X, CHENG Y, PANG Y, et al. Effects of advanced glycation end products on epithelial-mesenchymal transition and cancer stem cell associated markers in human colon cancer cell line SW620[J]. Chin J Cancer Biother, 2016, 23(3): 355-359. DOI: 10.3872/j.issn.1007-385X.2016.03.010. 
 [17]ZHANG X C, HU F Y, LI G, et al. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling[J]. Cell Death Dis, 2018, 9(2): 25. DOI: 10.1038/s41419- 017-0176-3. 
[18]王五艺, 程勇, 万林, 等. AGEs通过JAK2/STAT3信号通路诱导结肠癌SW480细胞增殖、侵袭及上皮间质转化[J]. 第三军医大学学报, 2017, 39(24): 2390-2395. DOI: 10.16016/j.1000-5404.201708199. 
WANG W Y, CHENG Y, WAN L, et al. Advanced glycation end products enhance proliferation and invasion of human colon cancer SW480 cells through JAK2/STAT3 pathway[J]. J Third Mil Med Univ, 2017, 39(24): 2390-2395. DOI: 10.16016/j.1000-5404.201708199. 
[19]BAI W, ZHOU J, ZHOU N, et al. Hypoxia-increased RAGE expression regulates chemotaxis and pro-inflammatory cytokines release through nuclear translocation of NF-κB and HIF1α in THP-1 cells[J]. Biochem Biophys Res Commun, 2018, 495(3): 2282-2288. DOI: 10.1016/j.bbrc.2017.12.084. 
[20]HORIUCHI S, ARAKI N, MORINO Y. Immunochemical approach to characterize advanced glycation end products of the maillard reaction. Evidence for the presence of a common structure[J]. J Biol Chem, 1991, 266(12): 7329-7332. 
[21]韩晓群. 晚期糖基化终末产物促进初始CD4~+T细胞向促炎症反应方向分化及机制研究[D]. 武汉: 武汉大学, 2014. 
HAN X Q. The research of advanced glycation end products promoting Cd4~+T helper cells differentiation toward pro-inflammatory response and the mechanism[D]. Wuhan: Wuhan University, 2014. 
[22]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1): 7-30. DOI: 10.3322/caac.21332. 
[23]KOYASU S, KOBAYASHI M, GOTO Y, et al. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge[J]. Cancer Sci, 2018, 109(3): 560-571. DOI: 10.1111/cas.13483. 
[24]LOO J M, SCHERL A, NGUYEN A, et al. Extracellular metabolic energetics can promote cancer progression[J]. Cell, 2015, 160(3): 393-406. DOI: 10.1016/j.cell.2014.12.018. 
[25]BALAMURUGAN K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. Int J Cancer, 2016, 138(5): 1058-1066. DOI: 10.1002/ijc.29519. 
[26]MACKLIN P S, MCAULIFFE J, PUGH C W, et al. Hypoxia and HIF pathway in cancer and the placenta[J]. Placenta, 2017, 56: 8-13. DOI: 10.1016/j.placenta.2017.03.010. 
[27]ALHAWARAT F M, HAMMAD H M, HIJJAWI M S, et al. The effect of cycling hypoxia on MCF-7 cancer stem cells and the impact of their microenvironment on angiogenesis using human umbilical vein endothelial cells (HUVECs) as a model[J]. Peer J, 2019, 7: e5990. DOI: 10.7717/peerj.5990. 
[28]RAMAKRISHNAN S K, SHAH Y M. Role of intestinal HIF-2α in health and disease[J]. Annu Rev Physiol, 2016, 78: 301-325. DOI: 10.1146/annurev-physiol-021115-105202. 
[29]RAMASAMY R, SHEKHTMAN A, SCHMIDT A M. The multiple faces of RAGE: opportunities for therapeutic intervention in aging and chronic disease[J]. Expert Opin Ther Targets, 2016, 20(4): 431-446. DOI: 10.1517/14728222.2016.1111873. 
[30]CHEN H B, WU L F, LI Y K, et al. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation[J]. Mol Cell Endocrinol, 2014, 395(1/2): 69-78. DOI: 10.1016/j.mce.2014.07.021.
 

更新日期/Last Update: 2019-08-13