[1]肖晴,黄文祥,章述军,等.人参皂苷Rg1激活腺苷酸激活蛋白激酶抑制体外诱导的非酒精性脂肪性肝细胞模型脂质沉积[J].第三军医大学学报,2019,41(14):1343-1349.
 XIAO Qing,HUANG Wenxiang,ZHANG Shujun,et al.Ginsenoside Rg1 activates AMPK to inhibit lipid deposition in a cell model of non-alcoholic fatty liver disease[J].J Third Mil Med Univ,2019,41(14):1343-1349.
点击复制

人参皂苷Rg1激活腺苷酸激活蛋白激酶抑制体外诱导的非酒精性脂肪性肝细胞模型脂质沉积
(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第14期
页码:
1343-1349
栏目:
基础医学
出版日期:
2019-07-30

文章信息/Info

Title:
Ginsenoside Rg1 activates AMPK to inhibit lipid deposition in a cell model of non-alcoholic fatty liver disease
作者:
重庆医科大学附属第一医院感染科
Author(s):
XIAO Qing HUANG Wenxiang ZHANG Shujun YANG Cheng LI Jiajun ZHAO Jinqiu GAO Yue
Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China 
关键词:
非酒精性脂肪性肝病人参皂苷Rg1脂质沉积腺苷酸活化蛋白激酶
Keywords:
non-alcoholic fatty liver disease ginsenoside Rg1 lipid deposition AMP-activated protein kinase 
分类号:
R282.71;R285.5;R575.505
文献标志码:
A
摘要:

目的 探讨人参皂苷Rg1对非酒精性脂肪性肝细胞模型脂质沉积的作用及其分子机制。方法 用0.25 mmol/L棕榈酸处理HepG2细胞24 h构建非酒精性脂肪肝细胞模型;加或不加10 μmol/L AMPK抑制剂(Compound C,CC)预处理1 h,再使用40 μg/mL人参皂苷Rg1或5 μmol/L二甲双胍处理6 h。微量法检测细胞内甘油三酯(triglyceride, TG)含量;油红O染色观察脂滴聚集情况。RT-qPCR及Western blot检测腺苷酸激活蛋白激酶(AMP-activated protein kinase,AMPK)通路相关基因及蛋白的变化。结果 与对照组比较,模型组细胞内TG、油红O染色吸光度增加(P<005)。Rg1能减少TG及油红O染色吸光度(P<005)。Rg1能增加被棕榈酸抑制的腺苷酸激活蛋白激酶(AMPK)和乙酰辅酶A羧化酶(acetyl-CoA carboxylase,ACC)的磷酸化,下调胆固醇结合调节元件蛋白(sterol regulatory element binding proteins-1c,SREBP-1C)和脂肪酸合成酶(fatty acid synthase,FAS)的表达(P<005),CC预处理能显著逆转Rg1的改善作用及其对AMPK通路的影响(P<005)。结论 Rg1可通过调控腺苷酸激活蛋白激酶通路减少非酒精性脂肪性肝病细胞模型脂质沉积.

Abstract:

Objective To investigate the effect of ginsenoside Rg1 on lipid deposition in a cell model of non-alcoholic fatty liver disease (NAFLD) and explore the molecular mechanism. MethodsHepG2 cells were treated with 0.25 mmol/L palmitic acid for 24 h to induce changes mimicking NAFLD, followed by treatment with 40 μg/mL ginsenoside Rg1 or 5 μmol/L metformin for 6 h with or without pretreatment with 10 μmol/L Compound C (CC, an AMPK inhibitor) for 1 h. The level of triglyceride (TG) in the cells was detected using a micromethod, and the accumulation of lipid droplets was observed using Oil Red O staining. RT-qPCR and Western blotting were employed to detect the alterations in the mRNA and protein expression of the key genes related to the AMPK pathway. ResultsCompared with the control cells, the cell model of NAFLD showed significantly increased intracellular TG level and lipid droplet accumulation (P<005), which were both reduced obviously after Rg1 treatment (P<005). Rg1 significantly abolished palmitic acid-induced inhibition of phosphorylation of intracellular AMPK and acetyl-CoA carboxylase (ACC), and down-regulated the expression of sterol regulatory element-binding protein-1c and fatty acid synthase (P<005). Pretreatment with CC significantly antagonized the effects of Rg1 on intracellular TG, lipid deposition and AMPK pathway in palmitic acid-induced cells (P<005). ConclusionGinsenoside Rg1 can ameliorate lipid deposition in the cell model of NAFLD by activating the AMPK pathway.

参考文献/References:

[1]ANDRONESCU C I, PURCAREA M R, BABES P A. Nonalcoholic fatty liver disease: epidemiology, pathogenesis and therapeutic implications[J]. J Med Life, 2018, 11(1): 20-23. 
[2]DAY C P, JAMES O F.Steatohepatitis: a tale of two “hits” ?[J]. Gastroenterology, 1998, 114(4): 842-845. 
[3]KHAN R, BRIL F, KEN C S, et al. Modulation of insulin resistance in NAFLD[J]. Hepatology, 2018. DOI: 10.1002/ hep.30429
[4]ZHANG H A, YANG X Y, XIAO Y F. AMPKα1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway[J]. Biochem Bioph Res Com, 2016, 474(2): 364-370. DOI: 10.1016/j.bbrc.2016. 04.111. 
[5]CHOI Y J, LEE K Y, JUNG S H, et al. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice[J]. Toxicol Appl Pharmacol, 2017, 316: 74-82. DOI: 10.1016/j.taap.2016.12.019. 
[6]NING C Q, GAO X G, WANG C Y, et al. Protective effects of ginsenoside Rg1 against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice through inhibiting toll-like receptor 4 signaling pathway[J]. Int Immunopharm, 2018, 61: 266-276. DOI: 10.1016/j.intimp.2018.06.008. 
[7]徐雅姝, 黄文祥, 阳成, 等. 人参皂苷Rg1对小鼠非酒精性脂肪肝的改善作用和机制研究[J/OL].重庆医科大学学报. [2019-05-31]. https://doi.org/10.13406/j.cnki.cyxb.001757.
XU Y S, HUANG W X, YANG C, et al. Effect of ginsenoside Rg1 against NAFLD in mice and its mechanism[J/OL]. J Chongqing Med Univ.[2019-05-31]. https://doi.org/10.13406/j.cnki.cyxb.001757.
[8]SINGH S, OSNA N A, KHARBANDA K K. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review[J]. World J Gastroenterol, 2017, 23(36): 6549-6570. DOI: 10.3748/wjg.v23.i36.6549. 
[9]桑婷婷, 郭铖洁, 郭丹丹, 等. 中医药通过调节肠道菌群抑制肥胖和炎症相关疾病的进展研究[J]. 中国中药杂志, 2018, 43(16): 3235-3242. DOI:10.19540/j.cnki.cjcmm.20180423.003.
SANG T T, GUO C J, GUO D D, et al. Effect of traditional Chinese medicine in inhibiting obesity and inflammatory diseases by regulating gut microbiota[J]. China J Chin Materia Medica, 2018, 43(16): 3235-3242. DOI:10.19540/j.cnki.cjcmm.20180423.003.
[10]ZHAO J Q, SHI Z Y, LIU S, et al. Ginsenosides Rg1 from panax ginseng: A potential therapy for acute liver failure patients?[J]. Evid Based Complement Alternat Med, 2014, 2014: 538059. DOI: 10.1155/2014/538059. 
[11]LI J, YANG C, ZHANG S, et al. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor-κB pathway and inhibition of inflammasome activation in alcoholic hepatitis[J]. Int J Mol Med, 2018, 41(2): 899-907. DOI:10.3892/ijmm.2017.3297.
[12]WOODS A, WILLIAMS J R, MUCKETT P J, et al. Liver-specific activation of AMPK prevents steatosis on a high-fructose diet[J]. Cell Rep, 2017, 18(13): 3043-3051. DOI: 10.1016/j.celrep.2017.03.011. 
[13]NIGRO D, MENOTTI F, CENTO A S, et al. Chronic administration of saturated fats and fructose differently affect SREBP activity resulting in different modulation of Nrf2 and Nlrp3 inflammasome pathways in mice liver[J]. J Nutr Biochem, 2017, 42: 160-171. DOI: 10.1016/j.jnutbio.2017.01.010. 
[14]TIAN W, CHEN L, ZHANG L, et al. Effects of ginsenoside Rg1 on glucose metabolism and liver injury in streptozotocin-induced type 2 diabetic rats[J]. Genet Mol Res, 2017, 16(1). DOI: 10.4238/gmr16019463. 
[15]LI J B, ZHANG R, HAN X, et al. Ginsenoside Rg1 inhibits dietary-induced obesity and improves obesity-related glucose metabolic disorders[J]. Braz J Med Biol Res, 2018, 51(4): e7139. DOI: 10.1590/1414-431X20177139. 
[16]YAN Y, ZHOU X E, XU H E, et al. Structure and physiological regulation of AMPK[J]. Int J Mol Sci, 2018, 19(11): E3534. DOI: 10.3390/ijms19113534. 
[17]KIM S J, YUAN H D, CHUNG S H.Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells[J]. Biol Pharm Bull, 2010, 33(2): 325-328. 
[18]SONG Y, KIM M B, KIM C, et al. 5, 7-dimethoxyflavone attenuates obesity by inhibiting adipogenesis in 3T3-L1 adipocytes and high-fat diet-induced obese C57BL/6J mice[J]. J Med Food, 2016, 19(12): 1111-1119. DOI: 10.1089/jmf.2016.3800. 
[19]顾业芸, 周启程, 公欣华, 等. 二氢山奈酚衍生物调控AMPK/PGC-1α通路抑制棕榈酸诱导的C2C12成肌分化细胞脂质沉积[J]. 第三军医大学学报, 2017, 39(16): 1606-1611. DOI:10.16016/j.1000-5404.201612097.
GU Y Y,ZHOU Q C, GONG X H,et al.Dihydrokaempferol derivatives inhibit palmitic acid-induced lipid deposition in C2C12 myotubes through AMPK/PGC-1a pathway[J]. J Third Mil Med Univ, 2017, 39(16): 1606-1611. DOI:10.16016/j.1000-5404.201612097.
[20]高燕翔, 张勇, 刘裕, 等. SREBP-1c在白藜芦醇预防大鼠非酒精性脂肪肝发生中的作用[J]. 第三军医大学学报, 2015, 37(17): 1704-1708. DOI:10.16016/j.1000-5404.201412125.
GAO Y X,ZHANG Y,LIU Y,et al. SREBP-lc is involved in preventive effect of resveratrol on pathogenesis of nonalcoholic fatty liver disease in rats[J]. J Third Mil Med Univ, 2015, 37(17): 1704-1708. DOI:10.16016/j.1000-5404.201412125.
[21]ZHONG J, GONG W Q, LU L, et al. Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-γ, AMPK/Akt/mTOR signaling and autophagy[J]. Int Immunopharmacol, 2017, 42: 176-184. DOI: 10.1016/j.intimp.2016.11.015. 
[22]CORONA VELAZQUEZ A F, JACKSON W T. So many roads: the multifaceted regulation of autophagy induction[J]. Mol Cell Biol, 2018, 38(21). DOI: 10.1128/mcb.00303-18.
[23]YANG P, LING L, SUN W J, et al. Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(2): 144-155. DOI: 10.1093/abbs/gmx136. 
[24]LI Y J, WANG F, LUO Y.Ginsenoside Rg1 protects against sepsis-associated encephalopathy through beclin 1-independent autophagy in mice[J]. J Surg Res, 2017, 207: 181-189. DOI: 10.1016/j.jss.2016.08.080. 
 

相似文献/References:

[1]王萍,周玥,王亚平,等.人参皂苷Rg1促进人牙周膜干细胞增殖与成骨分化[J].第三军医大学学报,2013,35(15):1566.
 Wang Ping,Zhou Yue,Wang Yaping,et al.Promotion of ginsenoside Rg1 on proliferation and osteogenic potential of human periodontal ligament stem cells[J].J Third Mil Med Univ,2013,35(14):1566.
[2]杨万兴.补益口服液中人参皂苷Rg1的含量测定方法[J].第三军医大学学报,2003,25(24):0.[doi:10.16016/j.1000-5404.2003.24.033 ]

更新日期/Last Update: 2019-07-22