[1]刘畅,王冠宇,周昌龙,等.黄体酮促进脑出血后轴突再生及其相关机制[J].第三军医大学学报,2019,41(13):1222-1231.
 LIU Chang,WANG Guanyu,ZHOU Changlong,et al.Progesterone promotes axonal regeneration after cerebral hemorrhage and related mechanisms in rats[J].J Third Mil Med Univ,2019,41(13):1222-1231.
点击复制

黄体酮促进脑出血后轴突再生及其相关机制(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第13期
页码:
1222-1231
栏目:
基础医学
出版日期:
2019-07-15

文章信息/Info

Title:
Progesterone promotes axonal regeneration after cerebral hemorrhage and related mechanisms in rats
作者:
刘畅王冠宇周昌龙贺学农夏小辉崔敏张光伟谭兴卫
重庆医科大学附属永川医院神经外科
Author(s):
LIU Chang WANG Guanyu ZHOU Changlong HE Xuenong XIA Xiaohui CUI Min ZHANG Guangwei TAN Xingwei

Department of Neurosurgery, the Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing, 402160, China

关键词:
脑出血轴突再生黄体酮神经功能障碍
Keywords:
cerebral hemorrhage axonal regeneration progesterone neurological dysfunction
分类号:
R743.34; R966; R977.12
文献标志码:
A
摘要:

目的观察黄体酮对脑出血(intracerebral hemorrhage, ICH)后大脑基底节区神经元轴突再生的影响,探讨其具体的机制。方法将SD大鼠分为脑出血组、黄体酮小剂量组(8 mg/kg)、黄体酮大剂量组(16 mg/kg),假手术组为对照组。观察各组术后1、3、7、14 d神经功能缺损、脑组织含水量、病理变化及轴突生长相关蛋白表达变化,并分析术后3 d各组脑血肿体积、氧化应激相关指标。联用大剂量黄体酮和PI3K/Akt通路抑制剂LY294002作为抑制剂组,检测术后3 d各组轴突相关蛋白及通路蛋白p-Akt、RhoA表达量的变化,并采用双标荧光对GAP43、p-Akt/RhoA进行定位。结果脑出血组大鼠在各时间点的神经功能障碍和脑水肿程度最重,脑血肿体积最大,氧化应激产物水平增高最明显,黄体酮干预后在各时间点损伤情况缓解,大剂量组比小剂量组的效果更明显,差异具有统计学意义(P<0.05);Western blot检测结果显示,黄体酮大剂量组比黄体酮小剂量组和脑出血组GAP43、NF200表达增加,MAG、Nogo-A表达降低,组间差异具有统计学意义(P<0.05);与黄体酮大、小剂量组比较,抑制剂组GAP43、NF200及p-Akt表达下调,MAG、Nogo-A、RhoA表达量增高,差异均有统计学意义(P<0.05);双标荧光结果显示,与脑出血组比较,黄体酮大剂量组神经元细胞上p-Akt表达上升,RhoA表达降低,差异具有统计学意义(P<0.05)。结论黄体酮可改善脑出血后神经功能障碍,促进损伤轴突的再生修复,该机制可能与激活PI3K/Akt通路从而抑制RhoA表达有关。

Abstract:

ObjectiveTo determine the effect of progesterone on axon regeneration of cerebral ganglia neurons after intracerebral hemorrhage (ICH), and explore the underlying mechanism. MethodsSD rats were randomly divided into ICH group, low- (8 mg/kg) and high-dose progesterone (16 mg/kg) groups, and sham operation group. Combined treatment of high-dose progesterone and PI3K/Akt pathway inhibitor LY294002 was given to the rats from the inhibitor group. The neurological deficits, brain water content and pathological changes and expression of axon growth-related proteins were observed at 1, 3, 7 and 14 d after operation. And the cerebral hematoma volume and oxidative stress related indexes were analyzed at 3 d after operation. The expression levels of axonal-associated proteins and pathway proteins p-Akt and RhoA were detected at 3 d after operation, and the locations of GAP43 and p-Akt/RhoA were identified with immunofluorescence staining. ResultsThe ICH group had severest neurological dysfunction and cerebral edema at each time point, and largest volume of cerebral hematoma and highest levels of oxidative stress products. After progesterone intervention, the damage was relieved at each time point, with the efficacy of high-dose more obvious than low-dose (P<0.05). Western blot results showed that the high-dose progesterone intervention increased the expression levels of GAP43 and NF200 and decreased those of MAG and Nogo-A when compared to the low-dose progesterone and ICH groups (P<0.05). Western blot analysis indicated that the expression of GAP43, NF200 and p-Akt was down-regulated while that of MAG, Nogo-A and RhoA was increased in the inhibitor group compared with the high- and low-dose progesterone groups (P<0.05). The results of double-labeled fluorescence staining showed that the expression of p-Akt was increased and that expression of RhoA was decreased in neuronal cells of the high-dose progesterone group compared with ICH group (P<0.05). ConclusionProgesterone improves neurological dysfunction after cerebral hemorrhage and promotes regeneration and repair of damaged axons, which may be related to activation of PI3K/Akt pathway and inhibition of RhoA expression.

参考文献/References:

[1]FEIGIN V L, LAWES C M, BENNETT D A, et al. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review[J]. Lancet Neurol, 2009, 8(4): 355-369. DOI:10.1016/S1474-4422(09)70025-0.
[2]BENOWITZ L I, CARMICHAEL S T. Promoting axonal rewiring to improve outcome after stroke[J]. Neurobiol Dis, 2010, 37(2): 259-266. DOI:10.1016/j.nbd.2009.11.009.
[3]DJEBAILI M, GUO Q M, PETTUS E H, et al. The neuro-steroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats[J]. J Neurotrauma, 2005, 22(1): 106-118. DOI:10.1089/neu.2005.22.106.
[4]BAYIR H, MARION D W, PUCCIO A M, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients[J]. J Neurotrauma, 2004, 21(1): 1-8. DOI:10.1089/089771504772695896.
[5]YAO X L, LIU J, LEE E, et al. Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats[J]. J Neurotrauma, 2005, 22(6): 656-668. DOI:10. 1089/neu.2005.22.656.
[6]ROBERTSON C L, FIDAN E, STANLEY R M, et al. Progesterone for neuroprotection in pediatric traumatic brain injury[J]. Pediatr Crit Care Med, 2015, 16(3): 236-244. DOI:10.1097/PCC. 0000000000000323.
[7]HEDAYATPOUR A, SHIASI M, FAMITAFRESHI H, et al. Co-administration of progesterone and melatonin attenuates ischemia-induced hippocampal damage in rats[J]. J Mol Neurosci, 2018, 66(2): 251-260. DOI:10.1007/s12031-018-1163-6.
[8]DEUTSCH E R, ESPINOZA T R, ATIF F, et al. Progesterone’s role in neuroprotection, a review of the evidence[J]. Brain Res, 2013, 1530: 82-105. DOI:10.1016/j.brainres.2013.07.014.
[9]JIANG C, ZUO F F, WANG Y J, et al. Progesterone exerts neuroprotective effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice[J]. Neurobiol  Aging, 2016, 42: 13-24. DOI:10.1016/j.neurobiolaging.2016.02.029.
[10]TENG W Y, WANG L S, XUE W S, et al. Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats[J]. Mediators Inflamm, 2009, 2009: 473276. DOI:10.1155/2009/473276.
[11]CUI J Z, CUI C M, CUI Y, et al. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage[J]. Cell Physiol Biochem, 2017, 42(1): 137-144. DOI:10. 1159/000477122.
[12]DANCAUSE N, BARBAY S, FROST S B, et al. Extensive cortical rewiring after brain injury[J]. J Neurosci, 2005, 25(44): 10167-10179. DOI:10. 1523/JNEUROSCI.3256-05.2005.
[13]HURTADO O, CRDENAS A, PRADILLO J M, et al. A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke[J]. Neurobiol Dis, 2007, 26(1): 105-111. DOI:10.1016/j.nbd. 2006.12.005.
[14]GUO Q M, SAYEED I, BARONNE L M, et al. Progesterone administration modulates AQP4 expression and edema after traumatic brain injury in male rats[J]. Exp Neurol, 2006, 198(2): 469-478. DOI:10.1016/j.expneurol.2005.12.013.
[15]DE NICOLA A F, GONZALEZ S L, LABOMBARDA F, et al. Progesterone treatment of spinal cord injury: Effects on receptors, neurotrophins, and myelination[J]. J Mol Neurosci, 2006, 28(1): 3-15. DOI:10.1385/JMN:30:3:341.
[16]ROOF R L, HALL E D. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone[J]. J Neurotrauma, 2000, 17(5): 367-388. DOI:10.1089/neu. 2000.17.367.
[17]YU P, ZHANG Z F, LI S J, et al. Progesterone modulates endothelial progenitor cell (EPC) viability through the CXCL12/CXCR4/PI3K/Aktsignallingpathway[J]. Cell Prolif, 2016, 49(1): 48-57. DOI:10.1111/cpr.12231.
[18]LI X J, ZHANG J H, ZHU X Q, et al. Progesterone reduces inflammation and apoptosis in neonatal rats with hypoxic ischemic brain damage through the PI3K/Akt pathway[J]. Int J Clin Exp Med, 2015, 8(5): 8197-8203.
[19]LI C, WEN H M, WANG Q M, et al. Exercise training inhibits the nogo-A/NgR1/Rho-A signals in the cortical peri-infarct area in hypertensive stroke rats[J]. Am J Phys Med Rehabil, 2015, 94(12): 1083-1094. DOI:10.1097/PHM. 0000000000000339.
[20]MEHTA N R, NGUYEN T, BULLEN J W Jr, et al. Myelin-associated glycoprotein (MAG) protects neurons from acute toxicity using a ganglioside-dependent mechanism[J]. ACS Chem Neurosci, 2010, 1(3): 215-222. DOI:10. 1021/cn900029p.
[21]ZHANG A L, YAN T, WANG K, et al. PI3Kα isoform-dependent activation of RhoA regulates Wnt5a-induced osteosarcoma cell migration[J]. Cancer Cell Int, 2017, 17: 27. DOI:10.1186/s12935-017-0396-8.
[22]CHENG C I, LEE Y H, CHEN P H, et al. Cobalt chloride induces RhoA/ROCK activation and remodeling effect in H9c2 cardiomyoblasts: Involvement of PI3K/Akt and MAPK pathways[J]. Cell Signal, 2017, 36: 25-33. DOI:10.1016/j. cellsig.2017.04.013.
[23]AMANO M, NAKAYAMA M, KAIBUCHI K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity[J]. Cytoskeleton (Hoboken), 2010, 67(9): 545-554. DOI:10.1002/cm.20472.
[24]AMIN E, DUBEY B N, ZHANG S C, et al. Rho-kinase: regulation, (dys)function, and inhibition[J]. Biol Chem, 2013, 394(11): 1399-1410. DOI:10. 1515/hsz-2013-0181.

相似文献/References:

[1]陶涛,秦新月,徐广会.养血清脑颗粒对大鼠脑缺血再灌注损伤后轴突再生及RGMa表达的影响[J].第三军医大学学报,2013,35(07):635.
 Tao Tao,Qin Xinyue,Xu Guanghui.Effects of Yangxue Qingnao Granule on RGMa expression and axonal regeneration in rats with focal cerebral ischemia reperfusion[J].J Third Mil Med Univ,2013,35(13):635.

更新日期/Last Update: 2019-07-08