[1]刘威,宁禹,陈思,等.线粒体转录因子A在婴儿胆汁淤积性黄疸肝细胞中的表达及其意义[J].第三军医大学学报,2019,41(09):859-865.
 LIU Wei,NING Yu,CHEN Si,et al.Expression and significance of mitochondrial transcription factor A in hepatocytes of infants with cholestatic jaundice[J].J Third Mil Med Univ,2019,41(09):859-865.
点击复制

线粒体转录因子A在婴儿胆汁淤积性黄疸肝细胞中的表达及其意义(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第09期
页码:
859-865
栏目:
基础医学
出版日期:
2019-05-15

文章信息/Info

Title:
Expression and significance of mitochondrial transcription factor A in hepatocytes of infants with cholestatic jaundice
作者:
刘威宁禹陈思周婉怡刘焱包斌霞张明满
重庆医科大学附属儿童医院肝胆外科,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,儿童发育重大疾病国家国际科技合作基地
Author(s):
LIU Wei NING Yu CHEN Si ZHOU Wanyi LIU Yan BAO Binxia ZHANG Mingman

Department of Hepatobiliary Surgery, Key Laboratory of Child Development and Disorders of Ministry of Education, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, China

关键词:
婴儿胆汁淤积肝细胞线粒体转录因子A沉默信息调节因子2相关酶类1
Keywords:
infants cholestasis hepatocytes mitochondrial transcription factor A silent mating type information regulator  2 homolog 1
分类号:
R322.47;R363.21;R725.757
文献标志码:
A
摘要:

目的探讨线粒体转录因子A(mitochondrial transcription factor A, mtTFA)在婴儿胆汁淤积性黄疸肝细胞中的表达情况及可能的调控机制。方法收集患儿肝脏标本并统计其临床资料;构建由甘氨鹅脱氧胆酸(glycochenodeoxycholic acid, GCDCA)诱导的人正常肝细胞(L02)胆汁淤积模型;HE染色检测患儿肝脏的形态学改变;Real-time PCR、qRT-PCR测定患儿肝细胞线粒体DNA(mitochondral DNA, mtDNA)拷贝数和转录水平以及mtTFA 和沉默信息调节因子2相关酶类1(silent mating type information regulator 2 homolog 1, SIRT1)通路相关mRNA水平的变化;Western blot测定mtTFA和SIRT1通路相关蛋白水平的变化。结果统计病例资料结果显示,黄疸组肝功较对照组明显下降(P<0.000 1);HE染色结果显示,黄疸组肝细胞形态结构紊乱,胆色素沉积,内见胆汁淤积;Real-time PCR、qRT-PCR结果显示,黄疸组肝细胞mtDNA拷贝数与转录水平显著下降(P<0.01),mtTFA、SIRT1和氧化物酶体增殖物激活受体γ辅激活因子1α(peroxisome proliferator-activated receptor gamma coactivator-1α, PGC-1α)mRNA水平明显降低(P<0.05);Western blot检测结果显示,黄疸组肝细胞、GCDCA诱导的L02细胞中mtTFA与SIRT1蛋白水平均显著下降(P<0.01),而PGC-1α差异无统计学意义(P>0.05),SRT1720激动SIRT1后mtTFA蛋白的表达较前明显升高(P<0.05)。结论mtTFA在婴儿胆汁淤积性黄疸肝细胞中的表达显著下降,SIRT1信号通路可能对mtTFA的表达具有调控作用。

Abstract:

ObjectiveTo investigate the expression of mitochondrial transcription factor A (mtTFA) in hepatocytes of infants with cholestatic jaundice and explore the possible regulatory mechanism. MethodsThe liver samples and clinical data of the infants with cholestatic jaundice were collected; The cholestatic model of glycochenodeoxycholic acid (GCDCA)-induced human normal hepatocyte (L02) was constructed. HE staining was used to detect morphological changes of the liver tissues. Real-time PCR and qRT-PCR were adopted to detect the mitochondral DNA (mtDNA) copy number and transcription level, and mRNA levels of mtTFA and silent mating type information regulator 2 homolog 1 (SIRT1) pathway-related genes. Western blotting was used to measure the protein levels of mtTFA and SIRT1 pathway-related proteins. ResultsClinical statistics presented that liver function of the jaundice group was significantly lower than that of control group (P<0.000 1). HE staining showed that the jaundice group had hepatocyte morphology disorder, bile pigmentation and intracellular cholestasis. The results of real-time PCR and qRT-PCR demonstrated that the mtDNA copy number and the transcriptional level of mtDNA in the hepatocytes were significantly lower in jaundice group (P<0.01), and the mRNA levels of mtTFA, SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) were significantly decreased in jaundice group (P<0.05); Western blot analysis showed that the protein levels of mtTFA and SIRT1 were significantly decreased in the liver tissues of the jaundice group and GCDCA-induced L02 cells (P<0.001), but that of PGC-1α had no statistical difference (P>0.05). Treatment with SIRT1 agonist SRT1720  resulted in increased expression level of mtTFA protein (P<0.05). ConclusionThe expression level of mtTFA is obviously decreased in hepatocytes of infants with cholestatic jaundice, and SIRT1 signaling pathway may play a regulatory role in its expression.

参考文献/References:

[1]FISCHLER B, LAMIREAU T. Cholestasis in the newborn and infant[J]. Clin Res Hepatol Gastroenterol, 2014, 38(3): 263-267. DOI:10.1016/j.clinre.2014.03.010.
[2]ZOLLNER G, TRAUNER M. Mechanisms of cholestasis[J]. Clin Liver Dis, 2008, 12(1): 1-26. DOI:10.1016/j. cld.2007.11.010.
[3]TIAO M M, LIN T K, CHA-WEI L O, et al. Early transcriptional deregulation of hepatic mitochondrial biogenesis and its consequent effects on murine cholestatic liver injury[J]. Apoptosis, 2009, 14(7): 890-899. DOI:10.1007/s10495-009-0357-3.
[4]LIN S J. Calorie restriction extends yeast life span by lowering the level of NADH[J]. Gene Develop, 2004, 18(1): 12-16. DOI:10.1101/gad.1164804.
[5]FINKEL T, DENG C X, MOSTOSLAVSKY R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255): 587-591. DOI:10.1038/ nature08197.
[6]STILES A R, SIMON M T, STOVER A,et al. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion[J]. Mol Genet Metab, 2016, 119(1/2): 91-99. DOI:10.1016/j.ymgme.2016.07.001.
[7]KANG D, KIM S H, HAMASAKI N. Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions[J]. Mitochondrion, 2007, 7(1/2): 39-44. DOI:10.1016/j.mito.2006.11.017.
[8]GURD B J. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J]. Appl Physiol Nutr Metab, 2011, 36(5): 589-597. DOI:10.1139/h11-070.
[9]PALMEIRA C M, ROLO A P. Mitochondrially-mediated toxicity of bile acids[J]. Toxicology, 2004, 203(1/2/3): 1-15. DOI:10.1016/j.tox.2004.06.001.
[10]ARDUINI A, SERVIDDIO G, ESCOBAR J,et al. Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions[J]. Am J Physiol-Gastrointest Liver Physiol, 2011, 301(1): G119-G127. DOI:10.1152/ajpgi.00253.2010.
[11]XU S C, CHEN Y B, LIN H,et al. Damage to mtDNA in liver injury of patients with extrahepatic cholestasis: The protective effects of mitochondrial transcription factor A[J]. Free Radical Biol Med, 2012, 52(9): 1543-1551. DOI:10.1016/j.freeradbiomed.2012.01.007.
[12]RUBIO-COSIALS A, SYDOW J F, JIMNEZ-MENNDEZ N,et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter[J]. Nat Struct Mol Biol, 2011, 18(11): 1281-1289. DOI:10.1038/nsmb.2160.
[13]KUKAT C, LARSSON N G. MtDNA makes a U-turn for the mitochondrial nucleoid[J]. Trends Cell Biol, 2013, 23(9): 457-463. DOI:10.1016/j.tcb.2013.04.009.
[14]BRENMOEHL J, HOEFLICH A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion, 2013, 13(6): 755-761. DOI:10.1016/j.mito. 2013.04.002.
[15]ANDERSON R M, BARGER J L, EDWARDS M G,et al. Dynamic regulation of PGC-1α localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response[J]. Aging Cell, 2008, 7(1): 101-111. DOI:10.1111/j.1474-9726.2007.00357.x.
[16]HASEGAWA K, WAKINO S, SIMIC P,et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes[J]. Nat Med, 2013, 19(11): 1496-1504. DOI:10.1038/nm.3363.
[17]QIN J,ZHOU J,DAI X,et al.Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice[J].Am J Transl Res,2016,8(8):3364-3375.
[18]ERION D M, YONEMITSU S, NIE Y,et al. Sirt1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats[J]. Proc Nat Acad Sci U S A, 2009, 106(27): 11288-11293. DOI:10.1073/pnas. 812931106.
[19]ZHOU Y, WANG S H, LI Y X,et al. SIRT1/PGC-1α signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats[J]. Front Mol Neurosci, 2018, 10: 443. DOI:10.3389/nmol.2017.00443.
[20]KIM M Y, LIM J H, YOUN H H,et al. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice[J]. Diabetologia, 2013, 56(1): 204-217. DOI:10.1007/s00125-012-2747-2.
[21]TAN M, TANG C, ZHANG Y,et al. SIRT1/PGC-1α signaling protects hepatocytes against mitochondrial oxidative stress induced by bile acids[J]. Free Radical Res, 2015, 49(8): 935-945. DOI:10.3109/10715762. 015.1016020.
[22]BRUNET A. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase[J]. Science, 2004, 303(5666): 2011-2015. DOI:10.1126/science. 094637.
[23]GURD B J, YOSHIDA Y, LALLY J,et al. The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis[J].  J Physiol, 2009, 587(8): 1817-1828. DOI:10.1113/ physiol.2008.168096.
[24]HIGASHIDA K, KIM S H, JUNG S R,et al. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: A reevaluation[J]. PLoS Biol, 2013, 11(7): e1001603. DOI:10.1371/journal.pbio. 001603.

相似文献/References:

[1]柴进,封欣婵,张樑君,等.Ezrin上调HepG2 细胞膜转运蛋白MRP2的表达[J].第三军医大学学报,2015,37(19 ):1951.
 Chai Jin,Feng Xinchan,Zhang Liangjun,et al.Ezrin knockdown up-regulates MRP2 protein membrane expression in HepG2 cells[J].J Third Mil Med Univ,2015,37(09):1951.
[2]王静波,常青,陈勇,等.妊娠肝内胆汁淤积症孕妇血清和脐血清一氧化氮变化及胎盘一氧化氮合酶的表达[J].第三军医大学学报,2005,27(18):1907.
[3]祝建勇,别平,韩本立.多药耐药蛋白在胆汁淤积中的作用研究进展[J].第三军医大学学报,2005,27(18):1893.
[4]高宇,柴进,李绍雪,等.川西獐牙菜醇提物对内毒素所致大鼠胆汁淤积性肝损伤的保护作用[J].第三军医大学学报,2014,36(08):769.
 Gao Yu,Chai Jin,Li Shaoxue,et al.Protective effect of alcohol extract of Swertia mussotii Franch on lipopolysaccharide-induced cholestatic liver damage in rats[J].J Third Mil Med Univ,2014,36(09):769.
[5]兰易,刘建,邹姝丽,等.FXR、CYP7A1在妊娠期肝内胆汁淤积症孕鼠胆汁酸代谢中的作用[J].第三军医大学学报,2008,30(16):1561.
 LAN Yi,LIU Jian,ZOU Shu-li,et al.Effects of FXR and CYP7A1 on metabolism of acid bile of pregnant rats with intrahepatic cholestasis[J].J Third Mil Med Univ,2008,30(09):1561.
[6]刘虹,王眠毅.妊娠肝内胆汁淤积症104例胎儿监护的临床价值[J].第三军医大学学报,2000,22(07):0.[doi:10.16016/j.1000-5404.2000.07.037 ]
 LIU Hong,WANG Min yi.[J].J Third Mil Med Univ,2000,22(09):0.[doi:10.16016/j.1000-5404.2000.07.037 ]
[7]顾长海,李梦东,汪耕祥,等.慢性活动性肝炎临床病理分型探讨[J].第三军医大学学报,1986,08(04):0.[doi:10.16016/j.1000-5404.1986.04.005 ]
 Gu Changhai,et al.[J].J Third Mil Med Univ,1986,08(09):0.[doi:10.16016/j.1000-5404.1986.04.005 ]

更新日期/Last Update: 2019-05-08