[1]周旭华,朱勋志,欧阳荣建,等.颌面部爆炸伤造成颅底继发损伤三维有限元仿真模拟及生物力学分析[J].第三军医大学学报,2019,41(04):308-314.
 ZHOU Xuhua,ZHU Xunzhi,OUYANG Rongjian,et al.Threedimensional finite element simulation and biomechanical analysis of maxillofacial blast injuries and secondary injuries to the skull base[J].J Third Mil Med Univ,2019,41(04):308-314.
点击复制

颌面部爆炸伤造成颅底继发损伤三维有限元仿真模拟及生物力学分析
(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第04期
页码:
308-314
栏目:
基础医学
出版日期:
2019-02-28

文章信息/Info

Title:
Threedimensional finite element simulation and biomechanical analysis of maxillofacial blast injuries and secondary injuries to the skull base
作者:
周旭华朱勋志欧阳荣建曾勇张纲谭颖徽
陆军军医大学(第三军医大学)第二附属医院口腔科;中国人民解放军31640部队
Author(s):
ZHOU Xuhua ZHU Xunzhi OUYANG Rongjian ZENG Yong ZHANG Gang TAN Yinghui

Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037; Troop 31640  of Chinese PLA, Wenshan, Yunnan Province, 663600, China

关键词:
爆炸伤颌面部有限元法颅底损伤生物力学
Keywords:
blast injury maxillofacial finite element method skull base injuries biomechanics
分类号:
R319; R642; R782.4
文献标志码:
A
摘要:

目的 利用有限元法(finite element method, FEM)构建人颌面部三维有限元模型,仿真模拟颌面部不同部位爆炸伤,对颅底部继发性损伤进行生物力学分析。方法 采集一成年男性头部CT数据,用有限元建模软件建立人颌面骨三维有限元模型;在爆炸当量、距离相同条件下,对颌面部不同部位爆炸伤进行动态仿真模拟;在颅底部选取15个标志点进行生物力学分析。结果 成功模拟出颌面部3个部位受到相同条件冲击波作用时,颌面骨骨折的动态过程、颅底部应力分布及传导情况;爆炸物距鼻尖前方5 cm时,卵圆孔内侧、垂体窝、斜坡等Von Mises应力较大;爆炸物距右眼眶下缘正前方5 cm时,卵圆孔内侧、垂体窝、斜坡等Von Mises应力较大;爆炸物距右侧颧弓正前方5 cm时,右侧蝶骨大翼、右侧卵圆孔内侧、斜坡等Von Mises应力较大。结论 利用FEM可以有效地模拟颌面部爆炸伤的致伤过程,颌面部不同部位受到爆炸冲击波时,应力集中区出现的部位不仅与颅底结构有关,也与应力传导途径有关。

Abstract:

Objective To construct a three-dimensional finite element model of human maxillofacial structures to dynamically simulate blast injuries in different maxillofacial regions and analyze the biomechanical characteristics of skull base injuries caused by maxillofacial blast injuries.  Methods The head CT data were acquired from a normal male adult and a three-dimensional finite element model of the maxillofacial bones was constructed using finite element modeling software. Using the same parameters of blast yield and distance, we dynamically simulated blast injuries in different maxillofacial regions on this model and analyzed the biomechanical data at 15 selected landmarks in the skull base.  Results We successfully simulated the dynamic process of maxillofacial fractures and stress distribution and conduction in the skull base using the constructed model. In the events of an explosion at precisely 5 cm from the front of the nasal bone tip and one at 5 cm from the front of the edge of the right orbit, the stress values of Von Mises at the medial foramen ovale, hypophyseal fossa, clivus and posterior wall of the foramen magnum were greater than those at the other landmarks; when the explosion occurred at 5 cm from the front of the right zygomatic arch, the right greater wing of the sphenoid bone, right medial foramen ovale, hypophyseal fossa, clivus and posterior wall of the foramen magnum sustained greater stress values of Von Mises. Conclusion Finite element modeling is capable of simulating the process of maxillofacial blast injuries. Blast wave impact in different maxillofacial regions results in stress concentration in different areas in relation not only to the structure of skull base but also to the stress conduction pathway.

参考文献/References:

[1]STEWART S K, PEARCE A P, CLASPER J C. Fatal head and neck injuries in military underbody blast casualties[J]. J Royal Army Med Corps, 2018: 1-4. DOI: 10.1136/jramc-2018-000942.
[2]CHANDA A, CALLAWAY C. Computational modeling of blast induced whole-body injury:  a review[J]. J Med Eng Technol,2018,42(2): 88-104. DOI: 10.1080/03091902.2018.1432711.
[3]MILLER G. The invisible wounds of war. Healing the brain, healing the mind[J]. Science,2011,333(6042):  514-517. DOI: 10.1126/science.333.6042.514.
[4]CERNAK I, MERKLE A C, KOLIATSOS V E, et al. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice[J]. Neurobiol Dis, 2011, 41(2):  538-551. DOI: 10.1016/j.nbd.2010.10.025.
[5]ROSSI T, BOCCASSINI B, ESPOSITO L, et al. Primary blast injury to the eye and orbit:  finite element modeling[J]. Invest Ophthalmol Vis Sci, 2012, 53(13):  8057-8066. DOI: 10.1167/iovs.12-10591.
[6]刘煜,杨资洋,吴坡,等. 人颅颌面部三维有限元模型建立及其撞击伤模拟研究[J].中华创伤杂志, 2016, 32(2): 161-165. DOI: 10.3760/cma.j.issn.1001-8050.2016.02.015.
LIU Y, YANG Z Y,WU P, et al. Experimental study on establishment of a 3D finite element model of human craniomaxill ofaeial region and its use in impact injury simulation[J]. Chin J Trauma, 2016, 32(2): 161-165. DOI: 10.3760/cma.j.issn.1001-8050.2016.02.015.
[7]LEI T, XIE L, TU W, et al. Blast injuries to the human mandible:  development of a finite element model and a preliminary finite element analysis[J]. Injury, 2012,43(11): 1850-1855. DOI: 10.1016/j.injury.2012.07.187.
[8]SEO J W, KANG D W, KIM J Y, et al. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation[J]. Biomed Mater Eng,2014,24(6): 2485-2493. DOI: 10.3233/BME-141062.
[9]CAMPBELL G M, GLüER C C. Skeletal assessment with finite element analysis:  relevance, pitfalls and interpretation[J]. Curr Opin Rheumatol, 2017, 29(4):  402-409. DOI: 10.1097/BOR.0000000000000405.
[10]AL NAZER R, RANTALAINEN T, HEINONEN A, et al. Flexible multibody simulation approach in the analysis of tibial strain during walking[J]. J Biomech, 2008, 41(5): 1036-1043. DOI: 10.1016/j.jbiomech.2007.12.002.
[11]CHOI A H, CONWAY R C, BENNISSAN B. Finiteelement modeling and analysis in nanomedicine and dentistry[J]. Nanomedicine (Lond), 2014, 9(11):  1681-1695. DOI: 10.2217/nnm.14.75.
[12]HUEMPFNERHIERL H, SCHALLER A, HEMPRICH A, et al. Biomechanical investigation of nasoorbitoethmoid trauma by finite element analysis[J]. Br J Oral Maxillofac Surg, 2014, 52(9):  850-853. DOI: 10.1016/j.bjoms.2014.07.255.
[13]LEE C H, HSU C C, HUANG P Y. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests[J]. Comput Biol Med, 2017,87: 250-257. DOI: 10.1016/j.compbiomed.2017.06.007.
[14]FLAMINI V, CREANE A P, KERSKENS C M, et al. Imaging and finite element analysis:  a methodology for non-invasive characterization of aortic tissue[J]. Med Eng Phys, 2015, 37(1): 48-54. DOI: 10.1016/j.medengphy.2014.10.006.
[15]KOJIC M, MILOSEVIC M, SIMIC V, et al. A composite smeared finite element for mass transport in capillary systems and biological tissue[J]. Comput Methods Appl Mech Eng, 2017, 324:  413-437. DOI: 10.1016/j.cma.2017.06.019.
[16]LEI T, XIE L, TU W, et al. Development of a finite element model for blast injuries to the pig mandible and  a preliminary biomechanical analysis[J]. J Trauma Acute Care Surg, 2012, 73(4):  902-907. DOI: 10.1097/TA.0b013e3182515cb1.
[17]DEPALMA R G, HOFFMAN S W. Combat blast related traumatic brain injury (TBI):  Decade of recognition; promise of progress[J]. Behav Brain Res, 2018, 340:  102-105. DOI: 0.1016/j.bbr.2016.08.036.
[18]YEH P H, GUAN KOAY C, WANG B, et al. Compromised neurocircuitry in chronic Blast-Related mild traumatic brain injury[J]. Hum Brain Mapp, 2017, 38(1):  352-369. DOI: 10.1002/hbm.23365.
[19]吴坡, 杨资洋, 刘煜, 等. 颌面撞击伤对颅底损伤的生物力学分析[J].中华口腔医学杂志,2016,51(8): 480-485. DOI: 10.3760/cma.j.issn.1002-0098.2016.08.009.
WU P, YANG Z Y, LIU Y, et al. Biomechanics analysis of the impact of maxillofacial injury on skull base damage[J].Chin J Stomatol,2016,51(8): 480-485. DOI: 10.3760/cma.j.issn.1002-0098.2016.08.009.
[20]BANDAK F A, LING G, BANDAK A, et al. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury[J]. Handb Clin Neurol, 2015, 127:  89-104. DOI: 10.1016/B978-0-444-52892-6.00006-4.
[21]STEPHENS J R, HOLMES S, BULTERS D, et al. The effect of direction of force to the craniofacial skeleton on the severity of brain injury in patients with a fronto-basal fracture[J]. Int J Oral Maxillofac Surg, 2016,45(7): 872-877. DOI: 10.1016/j.ijom.2016.01.016.
[22]DIVANI A A, MURPHY A J, MEINTS J, et al. A Novel preclinical model of moderate primary Blast-Induced traumatic brain injury[J]. J Neurotrauma, 2015, 32(14):  1109-1116. DOI: 10.1089/neu.2014.3686.
 

相似文献/References:

[1]王琳,吴文慧,杨春江,等.颌面部恶性黑色素瘤的病理分析[J].第三军医大学学报,2005,27(02):135.
[2]谭颖徽.对颌面部创伤救治中几个难点问题的认识[J].第三军医大学学报,2008,30(22):2063.
[3]史文进,李慧增,孙远,等.颌面部爆炸伤区血管的病理变化及其早期吻合的实验研究[J].第三军医大学学报,2001,23(04):0.[doi:10.16016/j.1000-5404.2001.04.003 ]
 SHI Wen-jin,LI Hui-zeng,SUN Yuan,et al.[J].J Third Mil Med Univ,2001,23(04):0.[doi:10.16016/j.1000-5404.2001.04.003 ]

更新日期/Last Update: 2019-02-21