[1]周鑫,黄竞卓,陈鑫,等.Gαi1蛋白促进短期低氧条件下表皮细胞迁移的实验研究[J].第三军医大学学报,2019,41(04):296-301.
 ZHOU Xin,HUANG Jingzhuo,CHEN Xin,et al.Gαi1 promotes migration of epidermal cells exposed to shortterm hypoxia [J].J Third Mil Med Univ,2019,41(04):296-301.
点击复制

Gαi1蛋白促进短期低氧条件下表皮细胞迁移的实验研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第04期
页码:
296-301
栏目:
基础医学
出版日期:
2019-02-28

文章信息/Info

Title:
Gαi1 promotes migration of epidermal cells exposed to shortterm hypoxia 
 
作者:
周鑫黄竞卓陈鑫毛彤春李翔燕荣帅石小花樊东力张一鸣
陆军军医大学(第三军医大学)第二附属医院整形美容外科
Author(s):
ZHOU Xin HUANG Jingzhuo CHEN Xin MAO Tongchun LI Xiang YAN Rongshuai SHI Xiaohua FAN Dongli ZHANG Yiming 
 

Department of Plastic Surgery, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China

关键词:
G&alphai1低氧表皮细胞细胞迁移
Keywords:
G&alphai1 hypoxia epidermal cells cell migration
分类号:
R322.99; R364.4; R394.2
文献标志码:
A
摘要:

目的 观察低氧条件下表皮细胞迁移及运动变化,初步探究G蛋白偶联受体相关的G蛋白Gαi1在迁移调控中的作用。方法 采用活细胞工作站观察比较HaCaT细胞在常氧及低氧处理24 h的迁移及运动情况,采用基因芯片技术筛选出早期关键调控基因,采用Western blot、免疫荧光以及慢病毒转染等方式,检测常氧及低氧条件下G蛋白表达变化,进一步观察细胞迁移情况。结果 低氧条件下HaCaT细胞迁移较常氧条件迁移能力明显增强(P<0.05);HaCaT细胞在低氧处理早期(前12 h)其运动速度及持久性明显强于常氧组。基因芯片、Western blot及免疫荧光检测结果显示,低氧条件下Gαi1蛋白呈现出高表达趋势(P<0.05);干扰Gαi1蛋白后,HaCaT细胞迁移能力明显降低,常氧及低氧组差异无统计学意义;同时低氧早期运动能力及持久性也明显降低。结论 低氧条件下表皮细胞迁移及运动能力明显增强。Gαi1蛋白在低氧促进表皮细胞迁移中起着极其重要的正向调控作用。

Abstract:

Objective To investigate the changes in the migration and motility of epidermal cells cultured under hypoxic conditions and the role of Gαi1 in promoting these changes. Methods A workstation for live cell imaging was used to observe the changes in the migration and motility of HaCaT cells cultured under hypoxic conditions for 24 h in comparison with cells in routine culture. Microarray chip technique was used to screen the differentially expressed genes that participated in the regulation of cell migration early after hypoxia exposure; Western blotting, immunofluorescence assay and lentivirus-mediated siRNA transfection were used to explore the role of Gαi1 protein in regulating the migration of HaCaT cells under hypoxic conditions. Results The migration ability of HaCaT cells was significantly enhanced under hypoxic conditions, and their movement rate and movement persistence were increased obviously early after hypoxic exposure (in the first 12 h) compared with the cells in normoxic culture. Western blotting and immunofluorescence assay showed that the exposure to hypoxia caused over-expression of Gαi1 protein in HaCaT cells.  RNA interference of Gαi1 protein significantly lowered the migration ability of the cells irrespective of normoxic and hypoxic exposures and also resulted in obviously lowered cell motility and movement persistence. Conclusion Short-term hypoxic exposure significantly enhances the migration and movement of epidermal cells, and Gαi1 protein plays an important role in promoting the migration of epidermal cells under hypoxia.

参考文献/References:

[1]REINKE J M, SORG H. Wound repair and regeneration[J]. Eur Surg Res, 2012, 49(1): 35-43. DOI: 10.1159/000339613.
 
[2]TAKEO M, LEE W, ITO M. Wound healing and skin regeneration[J]. CSH Perspect Med, 2015, 5(1): a023267. DOI: 10.1101/cshperspect.a023267.
 
[3]SCHREML S, SZEIMIES R M, PRANTL L, et al. Oxygen in acute and chronic wound healing[J]. Br J Dermatol, 2010, 163(2): 257-268. DOI: 10.1111/j.1365-2133.2010.09804.x.
 
[4]EAGLSTEIN W H, DAVIS S C, MEHLE A L, et al. Optimal use of an occlusive dressing to enhance healing. Effect of delayed application and early removal on wound healing[J]. Arch Dermatol, 1988, 124(3): 392-395. DOI: 10.1001/archderm.124.3.392. 
 
[5]GURTNER G C, WERNER S, BARRANDON Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. DOI: 10.1038/nature07039. 
 
[6]EAGLSTEIN W H. Experiences with biosynthetic dressings[J]. J Am Acad Dermatol, 1985, 12(2 Pt 2): 434-440. DOI: 10.1016/s0190-9622(85)80006-2. 
 
[7]ZOMER H D, TRENTIN A G. Skin wound healing in humans and mice: Challenges in translational research[J]. J Dermatol Sci, 2018, 90(1): 3-12. DOI: 10.1016/j.jdermsci.2017.12.009. 
 
[8]HOFFMAN M. The tissue factor pathway and wound healing[J]. Semin Thromb Hemost, 2018, 44(2): 142-150. DOI: 10.1055/s-0037-1606181. 
 
[9]KASUYA A, TOKURA Y. Attempts to accelerate wound healing[J]. J Dermatol Sci, 2014, 76(3): 169-172. DOI:10.1016/j.jdermsci.2014.11.001. 
 
[10]ZHANG H, FU W, XU Z. Re-epithelialization: a key element in tracheal tissue engineering[J]. Regen Med, 2015, 10(8): 1005-1023. DOI:10.2217/rme.15.68. 
 
[11]MARTINSGREEN M. The yin and yang of integrin function in re-epithelialization during wound healing[J]. Adv Wound Care (New Rochelle), 2013, 2(3): 75-80. DOI:10.1089/wound.2011.0342. 
 
[12]LIN C, EAR J, PAVLOVA Y, et al. Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration[J]. Sci Signal, 2011, 4(192): ra64. DOI:10.1126/scisignal.2002049. 
 
[13]ZHONG M, CLARKE S, VO B T, et al. The essential role of Giα2 in prostate cancer cell migration[J]. Mol Cancer Res, 2012, 10(10): 1380-1388. DOI:10.1158/1541-7786.MCR-12-0219. 
 
[14]WANG P H, HUANG B S, HORNG H C, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101. DOI:10.1016/j.jcma.2017.11.002. 
 
[15]BAUGH J A, GANTIER M, LI L, et al. Dual regulation of macrophage migration inhibitory factor (MIF) expression in hypoxia by CREB and HIF-1[J]. Biochem Biophys Res Commun, 2006, 347(4): 895-903. DOI:10.1016/j.bbrc.2006.06.148. 
 
[16]ANDRIKOPOULOU E, ZHANG X, SEBASTIAN R, et al. Current insights into the role of HIF-1 in cutaneous wound healing[J]. Curr Mol Med, 2011, 11(3): 218-235. DOI: 10.2174/156652411795243414. 
 
[17]LIN H H, HSIAO C C, PABST C, et al. Adhesion GPCRs in regulating immune responses and inflammation[J]. Adv Immunol, 2017, 136: 163-201. DOI: 10.1016/bs.ai.2017.05.005. 
 
[18]KRISHNAN A, NIJMEIJER S, DE GRAAF C, et al. Classification, nomenclature, and structural aspects of adhesion GPCRs[J]. Handb Exp Pharmacol, 2016, 234: 15-41. DOI: 10.1007/978-3-319-41523-9_2. 
 
[19]V ZQUEZPRADO J, BRACHOVALD S I, CERVANTESVILLAGRANA R D, et al. Gβγ pathways in cell polarity and migration linked to oncogenic GPCR signaling: Potential relevance in tumor microenvironment[J]. Mol Pharmacol, 2016, 90(5): 573-586. DOI: 10.1124/mol.116.105338. 
 
[20]HART S, FISCHER O M, PRENZEL N, et al. GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways[J]. Biol Chem, 2005, 386(9): 845-855. DOI: 10.1515/BC.2005.099. 
 
[21]TO J Y, SMRCKA A V. Activated heterotrimeric G protein αi subunits inhibit Rap-dependent cell adhesion and promote cell migration[J]. J Biol Chem, 2018, 293(5): 1570-1578. DOI: 10.1074/jbc.RA117.000964. 
 
[22]ZHANG Y M, ZHANG Z Q, LIU Y Y, et al. Requirement of Gαi1/3-Gab1 signaling complex for keratinocyte growth factor-induced PI3K-AKT-mTORC1 activation[J]. J Invest Dermatol, 2015, 135(1): 181-191. DOI: 10.1038/jid.2014.326.
 
 

更新日期/Last Update: 2019-02-21