[1]任轲,苟欣,康简.Pim-2抑制前列腺癌细胞凋亡信号通路的研究[J].第三军医大学学报,2019,41(04):323-330.
 REN Ke,GOU Xin,KANG Jian.Pim-2 signal pathway inhibits apoptosis of prostate cancer cells[J].J Third Mil Med Univ,2019,41(04):323-330.
点击复制

Pim-2抑制前列腺癌细胞凋亡信号通路的研究(/HTML )
分享到:

《第三军医大学学报》[ISSN:1000-5404/CN:51-1095/R]

卷:
41卷
期数:
2019年第04期
页码:
323-330
栏目:
基础医学
出版日期:
2019-02-28

文章信息/Info

Title:
Pim-2 signal pathway inhibits apoptosis of prostate cancer cells
作者:
任轲苟欣康简
重庆医科大学附属第一医院泌尿外科
Author(s):
REN Ke GOU Xin KANG Jian

Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

关键词:
Pim-2前列腺癌凋亡
Keywords:
Pim-2 apoptosis prostate cancer  
分类号:
R394.2; R730.23; R737.25
文献标志码:
A
摘要:

目的 探讨癌基因Pim-2抑制前列腺癌细胞凋亡的机制及其信号通路。方法 分别检测前列腺癌组织及前列腺增生组织中Pim-2及其下游信号通路因子的表达,通过RNAi技术分别沉默前列腺癌细胞株中Pim-2或XIAP表达,通过基因转染技术增强非肿瘤性前列腺上皮细胞中Pim-2或XIAP表达,检测eIF4B磷酸化水平及XIAP表达水平,测定细胞凋亡率。结果 Pim-2在前列腺癌组织及细胞株中的表达显著高于前列腺增生组织及非肿瘤性前列腺细胞株(P<0.05);在非肿瘤性前列腺细胞株中转染Pim-2后,其Pim-2表达水平显著增高,eIF4B磷酸化水平及XIAP表达水平也同时显著增高,而细胞凋亡率则显著降低(P<0.05);在前列腺癌细胞株中转染Pim-2 SiRNA后,Pim-2表达水平显著减低,eIF4B磷酸化水平及XIAP表达水平也同时显著降低,而细胞凋亡率则显著增高(P<0.05);在高表达Pim-2及XIAP的前列腺癌细胞株中转染XIAP SiRNA沉默其表达后,细胞凋亡率显著增高(P<0.05);在低表达Pim-2及XIAP的非肿瘤性前列腺细胞株中转染XIAP增强其表达后,细胞凋亡率无明显变化。结论 Pim-2在前列腺癌细胞中异常高表达;Pim-2可通过磷酸化eIF4B促进XIAP表达,抑制细胞凋亡;仅当Pim-2与XIAP同时高表达时才能抑制前列腺癌细胞凋亡。

Abstract:

Objective To explore the mechanism by which Pim-2 signal pathway inhibits apoptosis of prostate cancer cells. Methods We examined the expression levels of Pim-2 and the downstream factors in prostate cancer tissues, benign prostatic hyperplasia tissues, prostate cancer cell lines and prostatic epithelial cells. In prostate cancer DU-145 cell line with Pim-2 or XIAP silencing using RNA interference technique and in non-neoplastic prostatic epithelial cell line RWPE-1  over-expressing Pim-2 or XIAP via gene transfection, we detected the phosphorylation level of eIF4B and the expression of XIAP and examined the apoptosis rate of the cells. Results Pim-2 was significantly over-expressed in prostate cancer tissues and prostate cancer cell lines as compared with benign prostatic hyperplasia tissue and non-neoplastic prostatic epithelial cells. RWPE-1 cells over-expressing Pim-2 showed significantly increased phosphorylation level of eIF4B with enhanced XIAP expression and a significantly lowered apoptosis rate. DU-145 cells with Pim-2 silencing exhibited significantly lowered phosphorylation level of eIF4B and XIAP expression with obviously increased cell apoptosis rate. XIAP silencing in DU-145 cells that over-expressed Pim-2 and XIAP caused a significant increase in the cell apoptosis rate; XIAP over-expression in RWPE-1 cells with low expressions of Pim-2 and XIAP did not cause significant changes in the cell apoptosis rate. Conclusion Pim-2 is over-expressed in prostate cancer cells. Pim-2 may inhibit the apoptosis of prostate cancer cells through phosphorylating eIF4B to promote XIAP expression, and this inhibitory effect occurs only when both Pim-2 and XIAP are overexpressed in prostate cancer cells.

 

参考文献/References:

[1]REBELLO R J, HUGLO A V, FURIC L. Pim activity in tumours: a key node of therapy resistance[J]. Adv Biol Regul, 2018, 67: 163-169.DOI: 10.1016/j.jbior.2017.10.010.

[2]AZIZ A U R, FARID S, QIN K, et al. Pim kinases and their relevance to the pi3k/akt/mtor pathway in the regulation of ovarian cancer[J]. Biomolecules, 2018, 8(1): E7. DOI: 10.3390/biom8010007.

[3]ISHIKAWA C, SENBA M, HASHIMOTO T, et al. Expression and significance of Pim-3 kinase in adult T-cell leukemia[J]. Eur J Haematol, 2017, 99(6): 495-504. DOI: 10.1111/ejh.12940.

[4]HIASA M, TERAMACHI J, ODA A, et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma[J]. Leukemia, 2015, 29(1): 207-217. DOI: 10.1038/leu.2014.147.

[5]REN K, ZHANG W, SHI Y, et al. Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-κB pathway[J]. Pathol Oncol Res, 2010, 16(2): 229-237.  DOI: 10.1007/s12253-009-9215-4.

[6]FOX C J, HAMMERMAN P S, CINALLI R M, et al. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor[J]. Genes Dev, 2003, 17(15): 1841-1854. DOI: 10.1101/gad.1105003.

[7]KEANE N A, REIDY M, NATONI A, et al. Targeting the Pim kinases in multiple myeloma[J]. Blood Cancer J, 2015: e325. DOI: 10.1038/bcj.2015.46.

[8]DAI H, LI R, WHEELER T, et al. Pim-2 upregulation: biological implications associated with disease progression and perinueral invasion in prostate cancer[J]. Prostate, 2005, 65(3): 276-286. DOI: 10.1002/pros.20294.

[9]DAI J M, ZHANG S Q, ZHANG W, et al. Antisense oligodeoxynucleotides targeting the serine/threonine kinase Pim-2 inhibited proliferation of DU-145 cells[J]. Acta Pharmacol Sin, 2005, 26(3): 364368. DOI:10.1111/j.1745-7254.2005.00050.x.

[10]WHITE E. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines[J]. Genes Dev, 2003, 17(15): 1813-1816. DOI: 10.1101/gad.1123103.

[11]PENG C, KNEBEL A, MORRICE N A, et al. Pim kinase substrate identification and specificity[J]. J Biochem, 2007, 141(3): 353-362. DOI: 10.1093/jb/mvm040.

[12]REN K, GOU X, XIAO M, et al. The over-expression of Pim-2 promote the tumorigenesis of prostatic carcinoma through phosphorylating eIF4B[J]. Prostate, 2013, 73(13): 1462-1469. DOI: 10.1002/pros.22693.

[13]OH H J, LEE J S, SONG D K, et al. D-glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K[J]. Biochem Biophys Res Commun, 2007, 360(4): 840-845. DOI: 10.1016/j.bbrc.2007.06.137.

[14]SHAHBAZIAN D, PARSYAN A, PETROULAKIS E, et al. Control of cell survival and proliferation by mammalian eukaryotic initiation factor 4B[J]. Mol Cell Biol, 2010, 30(6): 1478-1485. DOI: 10.1128/MCB.01218-09.

[15]YE C, ZHANG C, HUANG H, et al. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/CXCR4 interaction[J]. Cell Physiol Biochem, 2018, 48(3): 1230-1244. DOI: 10.1159/000492009.

[16]MOLOGNI L, MAGISTRONI V, CASUSCELLI F, et al. The novel PIM1 inhibitor NMS-P645 reverses PIM1-dependent effects on TMPRSS2/ERG positive prostate cancer cells and shows anti-proliferative activity in combination with PI3K inhibition[J]. J Cancer, 2017, 8(1): 140-145.

[17]QU Y, ZHANG C, DU E, et al. Pim-3 is a critical risk factor in development and prognosis of prostate cancer[J]. Med Sci Monit, 2016, 22: 4254-4260. DOI: 10.12659/msm.898223.

[18]SHAHBAZIAN D, ROUX P P, MIEULET V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity[J]. EMBO J, 2006, 25(12): 2781-2791. DOI: 10.1038/sj.emboj.7601166.

[19]KROCZYNSKA B, KAUR S, KATSOULIDIS E, et al. Interferondependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals[J]. Mol Cell Biol, 2009, 29(10): 2865-2875. DOI: 10.1128/MCB.01537-08.

[20]CHEN L S, REDKAR S, TAVERNA P, et al. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia[J]. Blood, 2011, 118(3): 693-702. DOI: 10.1182/blood-2010-12-323022.

[21]ZEMSKOVA M, SAHAKIAN E, BASHKIROVA S, et al. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells[J]. J Biol Chem, 2008, 283(30): 20635-20644. DOI: 10.1074/jbc.M709479200.

[22]KAPELKOSOWIK K, URBANIAKKUJDA D, WOOWIEC D, et al. Expression of Pim-2 and NF-κB genes is increased in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is associated with complete remission rate and overall survival[J]. Postepy Hig Med Dosw (Online) ,2013, 67: 553-559.

[23]ASANO J, NAKANO A, ODA A, et al. The serine/threonine kinase Pim-2 is a novel antiapoptotic mediator in myeloma cells[J]. Leukemia, 2011, 25(7): 1182-1188. DOI: 10.1038/leu.2011.60.

[24]PARK Y H, SEO S Y, LEE E, et al. Simvastatin induces apoptosis in castrate resistant prostate cancer cells by deregulating nuclear factor-κB pathway[J]. J Urol, 2013, 189(4): 1547-1552. DOI: 10.1016/j.juro.2012.10.030.

[25]KIM H R, PARK C G, JUNG J Y. Acacetin (5,7dihydroxy-4’methoxyflavone) exhibits in vitro and in vivo anticancer activity through the suppression of NF-κB/Akt signaling in prostate cancer cells[J]. Int J Mol Med, 2014, 33(2): 317-324. DOI: 10.3892/ijmm.2013.1571.

[26]RODRíGUEZBERRIGUETE G, TORREALBA N, ORTEGA M A, et al. Prognostic value of inhibitors of apoptosis proteins (IAPs) and caspases in prostate cancer: caspase-3 forms and XIAP predict biochemical progression after radical prostatectomy[J]. BMC Cancer, 2015, 15: 809. DOI: 10.1186/s12885-015-1839-z.

[27]SELIGSON D B, HONGO F, HUERTAYEPEZ S, et al. Expression of X-linked inhibitor of apoptosis protein is a strong predictor of human prostate cancer recurrence[J]. Clin Cancer Res, 2007, 13(20): 6056-6063. DOI: 10.1158/1078-0432.CCR-07-0960.

[28]HWANG C, OETJEN K A, KOSOFF D, et al. X-linked inhibitor of apoptosis deficiency in the TRAMP mouse prostate cancer model[J]. Cell Death Differ, 2008, 15(5): 831-840. DOI: 10.1038/cdd.2008.15.

[29]OWENS T W, FOSTER F M, VALENTIJN A, et al. Role for X-linked inhibitor of apoptosis protein upstream of mitochondrial permeabilization[J]. J Biol Chem, 2010, 285(2): 1081-1088. DOI: 10.1074/jbc.M109.072322.

[30] GOGADA R, PRABHU V, AMADORI M, et al. Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated bax protein oligomerization on mitochondria to initiate cytochrome crelease and caspase activation[J]. J Biol Chem, 2011, 286(33): 28749-28760. DOI: 10.1074/jbc.M110.202440.

 

相似文献/References:

[1]刁鑫伟,叶明福,谢启超,等.二氢睾酮对前列腺癌LNcap和PC-3细胞株EGFR mRNA表达的影响[J].第三军医大学学报,2005,27(16):1690.
[2]王家武,姜庆,樊晓栋.新辅助内分泌联合治疗与单纯根治性手术对前列腺癌预后和疗效的Meta分析[J].第三军医大学学报,2011,33(13):1388.
 Wang Jiawu,Jiang Qing,Fan Xiaodong.Prognosis and efficacy of new adjuvant combination endocrine therapy versus radical surgery for prostate cancer: a meta-analysis study[J].J Third Mil Med Univ,2011,33(04):1388.
[3]胡望平,冯福英,叶桂云,等.血清c-PSA及 C/T在提高前列腺癌诊断特异性中的探讨[J].第三军医大学学报,2007,29(18):1815.
 HU Wang-Ping,FENG Fu-ying,YE Gui-yun,et al.Serum complexed-PSA and ratio of complexed/total PSA to improve diagnostic specificity on identifying prostate cancer[J].J Third Mil Med Univ,2007,29(04):1815.
[4]王惠明,王沂芹,阮志华,等.Prostein31-39特异的、HLA-A*2.1限制性NKT细胞表型及功能初步研究[J].第三军医大学学报,2006,28(16):1652.
[5]李云祥,苟欣,何卫阳,等.E2F-3, pRb蛋白在前列腺癌中的表达及其临床意义[J].第三军医大学学报,2006,28(15):1611.
[6]陈勇,江军,张尧,等.含rPB-DR启动子和TK基因的重组腺病毒的构建和鉴定[J].第三军医大学学报,2006,28(10):1043.
[7]吴开杰,张栋,曾津,等.RNAi沉默Smad4基因表达对人前列腺癌细胞增殖的影响[J].第三军医大学学报,2009,31(13):1250.
 WU Kai-jie,ZHANG Dong,ZENG Jin,et al.Effects of Smad4 gene silencing by small interfering RNA on the proliferation of prostate cancer cells in vitro[J].J Third Mil Med Univ,2009,31(04):1250.
[8]张伟杰,马志俊,陆士新,等.前列腺癌组织中DNMT1的表达与GSTP1、APC甲基化状态的关系及临床意义[J].第三军医大学学报,2011,33(15):1602.
 Zhang Weijie,Ma Zhijun,Lu Shixin,et al.Correlation of DNMT1 expression with GSTP1 and APC methylation and its clinical significance[J].J Third Mil Med Univ,2011,33(04):1602.
[9]刁鑫伟,叶明福,张哉根,等.前列腺癌AR表达与细胞增殖的关系[J].第三军医大学学报,2005,27(17):1799.
[10]张尧,江军,王洛夫.前列腺特异性启动子rPB的改造及其载体质粒的构建和活性测定[J].第三军医大学学报,2005,27(10):981.

更新日期/Last Update: 2019-02-22